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Abstract: Ripple down rules have addressed two of the major limitations of first generation Expert Systems (ES), the 
maintenance and knowledge acquisition (KA) bottleneck problems. This is achieved through acquiring knowledge 
directly from an expert, the use of an exception structure for knowledge representation and the storing of the cornerstone 
case associated with each rule. Just as RDR has offered a paradigm shift in the way these problems were solved, it is 
expected that RDR can offer a new approach to the issue of knowledge reuse.  
 
Due the poor acceptance of ES by end-users, our focus is more on reusing knowledge in different modes, such as 
explanation, critiquing or ‘what-if’ within the same domain rather than the more conventional approach of reusing 
problem-solving methods or ontologies to solve a similar problem in a somewhat differerent domain. An evaluation of 
RDR for reuse showed that many modes of use were possible without any change to the knowledge or its structure but 
that some modes required understanding of the models represented. Since RDR does not require analysis or modeling of 
the domain for KA, maintenance or finding conclusions we have incorporated ideas from Formal Concept Analysis 
(FCA) to allow concepts and the relationships between them to be identified and explored. The addition of FCA tools to 
RDR is described in this paper.  
 
 
1. The Reuse of Knowledge 
The reuse of knowledge should result in potential savings 
in cost, savings in time and increase in reliability as has 
been recognised in the reuse of software components 
[17]. Given the difficulties associated with knowledge 
acquisition (KA) the benefits of reusing knowledge 
should be even greater. 

The issue of knowledge reuse has been primarily handled 
by separation of domain and problem solving knowledge 
[2],[24],[37] the use of reusable ontologies [16] and 
design of Expert Systems (ES) at the knowledge level 
[27],[40]. These methods require extensive and complex 
modeling of the knowledge and have done little to 
alleviate the KA bottleneck and maintenance problems 
associated with large knowledge based systems (KBS) 
[25]. This study has chosen to use a technique, known as 
ripple down rules (RDR) which has addressed these 
issues and does not require a priori modeling of the 
knowledge. Just as RDR has offered a paradigm shift in 
the way these problems were solved, it is expected that 
RDR can offer a new approach to the issue of knowledge 
reuse. 

Another difference between this study and much 
knowledge reuse research is the focus on what knowledge 
is to be reused and how. The above approaches have been 
mostly interested in how to incorporate existing 
knowledge into another system, thereby solving a similar 
problem in a somewhat different domain. This study 
pursues a more novel aspect of reuse and considers how 
knowledge in an existing KBS can be used to handle a 
different decision situation in the same domain. The 
motivation for this type of reuse is the poor acceptance 
and underutilisation of ES by end-users due to the lack of 
attention to computer and user cooperation issues in  
KBS [22],[34]. Cooperation includes the human-
computer interface (usability) and the mode of interaction 
(usefulness) [30]. The problem is that different users, and 
the same user at different times, may have different needs 
and it will be necessary to adapt the knowledge to fit the 
appropriate decision situation. The need to perform 
knowledge modeling by most approaches has resulted in 
a KA focus on knowledge elicitation [34]. By using 
simple KA techniques we plan to focus more on user 
requirements and the different modes of use needed to 
fulfill them.  



Although the type of reuse we are looking at may be 
different, all types of reuse require understanding of what 
we have and how to adapt it to fit the new situation. 
Current reuse research has concluded that reuse is 
facilitated by the capturing of contextual [16],[28], deeper 
[2],[38] and more [1],[17],[23] knowledge and the use of 
different levels of abstraction and different knowledge 
representations [2],[36].  

The way that RDR addresses these reuse issues and the 
ability to easily use or adapt existing RDR 
implementations to handle a wide range of different 
modes of usage using the same knowledge base has been 
explored [32]. In that study the two main RDR 
implementations on the personal computer were used to 
perform KA, consultation, explanation, what-if analysis 
and critiquing. In some cases changes were made to the 
human computer interface but the representation and 
structure of the knowledge were not changed. These 
results are in stark contrast to most of the work on 
knowledge reuse, where the focus is heavily upon 
changing the problem solving method and/or knowledge 
representation for each task [2],[24],[37]. However, it 
was also found that not all modes of use can be supported 
without greater effort. Since different tasks have different 
knowledge requirements, we wanted to find a formal 
method for identifying the concepts we were capturing, 
the relationships between them and to elicite further 
concepts with minimal additional effort on the part of the 
expert to allow other future uses of the knowledge. 

To this end, this paper reports on work that has been done 
to add the ideas from Formal Concept Analysis (FCA) 
[41] to multiple classification MCRDR. RDR and FCA 
are described in more detail in the next two sections. We 
then look at how the techniques have been combined and 
finish with a discussion of the findings and future work. 

2. Ripple Down Rules 
The original motivation for RDR was to attempt to deal 
with the situated nature of the knowledge provided by 
experts, particularly as observed during KBS 
maintenance [5]. Rules are added in response to an 
incorrect conclusion. The case that prompted a new rule 
to be added, known as the cornerstone case, is stored in 
association with the new rule to provide validated KA by 
ensuring the expert does not add any rules which would 
result in any of the cornerstone cases being given a 
different conclusion from that stored.  

In initial studies the focus has been on classification tasks 
where only a single classification per case is required. We 

can define a single-classification RDR as a triple 
<rule,X,N>, where X are the exception rules and N are 
the if-not rules [35]. When a rule is satisfied the 
exception rules are evaluated and none of the lower rules 
are tested. The major success for this approach has been 
the PEIRS system, a large medical expert system for 
pathology laboratory report interpretation built by experts 
without the support of a knowledge engineering [10].  

 

More recently we have developed MCRDR to deal with 
classification tasks where multiple independent 
classifications are required [19],[20]. MCRDR is defined 
as the triple <rule,C,S>, where C are the 
children/exception rules and S are the siblings. All 
siblings at the first level are evaluated and if true the list 
of children are evaluated until all children from true 
parents have been exhausted. The last true rule on each 
pathway forms the conclusion for the case. Figure 1 
shows an example of an MCRDR. The MCRDR system 
produces somewhat more compact knowledge bases with 
less repetition than RDR even for single classification 
domains, probably because more use is made of expertise 
rather than depending on the KB structure  [20]. MCRDR 
was chosen for this study since the ability to provide 
multiple conclusions for a given case is more appropriate 
for many domains and, more importantly, because the 
problem of how to handle the false “if-not” branches [33] 
does not exist. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:An MCRDR KBS. The highlighted boxes 
represent rules that are satisfied for the case {a,d,g,h,k}. 
We can see that there are three conclusions: Class 2(Rule 
2), Class 5 (Rule 5) and Class 8 (Rule 10). 

Rule 0:
True 

Rule 1: 
a,c  C1 

Rule 3: 
e  C4 

Rule 2: 
a,d  C2 

Rule 6: 
f,e  C6

Rule 4: 
k  C3 

Rule 8: 
i  C7 

Rule 7: 
d,g  C5 

Rule 5: 
 g,h  C5

Rule 9: 
i  C7 

Rule 10: 
a,h  C8



Although RDR research has concentrated on KA and 
maintenance the work on reflective ES [11] and causal 
modeling [23] has found RDR to be an extendable 
representation. The rule pathway provided by the RDR 
exception structure has been shown [6],[32] to offer a 
better explanation of how the knowledge has evolved, 
why a rule has both succeeded and failed and what 
alternative pathways are possible than conventional rule 
traces. As mentioned in section one, the concern of this 
study has been more on reusing knowledge in different 
modes than on different problem types and since certain 
modes of use require understanding the models inherent 
in the KB rules we decided to investigate Formal Concept 
Analysis. 

3. Formal Concept Analysis 
Formal Concept Analysis, first developed by Wille [41], 
is a mathematically based method of finding, ordering 
and displaying formal concepts as a lattice [44]. The 
ability to express all relationships between attributes, 
such as which attributes occur together, and the ability to 
describe each object in terms of the concepts it contains 
and the relationship of those concepts to others is a major 
strength of the lattice structure [4].  

 
FCA is “based on the philosophical understanding of a 
concept as a unit of thought consisting of two parts: the 
extension and intension (comprehension); the extension 
covers all objects (entities) belonging to the concept 
while the intension comprises all attributes (or properties) 
valid for all those objects” [44, p.493]. The set of objects 
and their attributes, known as the extension and intension 
respectively, constitute a formal context which may be 
used to derive a set of ordered concepts. The following 
description of FCA follows Wille [41].  

A formal context (K) has a set of objects G (for 
Gegenstande in German) and set of attributes M (for 
Merkmale in German) which are linked by a binary 
relation I which indicates that the object g (from the set 
G) has the attribute m (from the set M) and is defined as: 

K = (G,M,I). Thus in figure 2 we have the context K of 
animals with G = {bird, reptile, amphibian, mammal and 
fish} and M = {has wings, flys, suckles young, warm-
blooded, cold-blooded, breeds in water, breeds on land, 
has scales}. The crosses show where the relation I exists, 
thus I = {(bird,has wings), (bird,flys), (bird,cold-
blooded), (bird,breeds on land), (reptile, cold-
blooded),…,(fish, has scales)}. 

A formal concept is a pair (X,Y) where X is the extent, 
the set of objects, and Y is the intent, the set of attributes, 
for the concept. The derivation operators: 

            X ⊆ G :  X a  X′ :={m∈ M | gIm for all g ∈ X } 
            Y ⊆ M:  Y a  Y′  :={g ∈ G | gIm for all m ∈ Y} 

are used to construct all formal concepts of a formal 
context, by finding the pairs (X′′,X′) and (Y′,Y′′).  We 
can obtain all extents X′ by determining all row-intents 
{g}′ with g ∈ G and then finding all their intersections. 
Alternatively Y′ can be obtained by determining all 
column-intents {m}′ with m ∈ M and then finding all 
their intersection. This is specified as: 

X′ =   { }g
g X∈
I ′    Y′ = { }m

m Y∈
I ′  

Less formally, we take the set of objects, G, to form the 
initial extent X which also represents our largest concept. 
We then process each attribute sequentially in the set M, 
finding the intersections of the extent for that attribute 
with all previous extents. Once the extents have been 
found for all attributes, the intents X′ for each extent X 
may be found by taking the intersection of the intents for 
each object within the set. Thereby we determine all 
formal concepts of the context K by finding the pairs 
(X,X′). 

Having found the concepts it is necessary to find the 
subconcept-superconcept relation between concepts so 
that they may be ordered and represented as a labelled 
line diagram. We can use the subsumption relation ≤ on 
the set of all concepts formed such that (X1,Y1) ≤ (X2,Y2) 
iff X1 ⊆ X2. For a family (Xi,Yi) of formal concepts of K 
the greatest subconcept, the join, and the smallest 
superconcept, the meet, are respectively given by: 

i I∈
∨ (Xi,Bi):=  (( )", )A Bi i

i Ii I ∈∈
IU  

i I∈
∧ (Xi,Bi):=  ( , ( )" )A Bi

i I
i

i I∈ ∈
I U  

From Lattice Theory, we are able to form a complete 
lattice, called a concept lattice and denoted Β(K), with the 

 A1 A2 A3 A4 A5 A6 A7 A8 
Bird X X   X  X  
Reptile     X  X X 
Amphibian     X X   
Mammal   X X   X  
Fish     X X  X 
Figure 2: Context of “Vertebrates of the Animal 
Kingdom”.  Columns A1-A8 represent has-wings, flies, 
suckles-young, warm-blooded, cold-blooded, breeds-in-
water, breeds-on-land and has-scales. 



ordered concept set. The concept lattice provides 
“hierarchical conceptual clustering of the objects (via the 
extents) …. and a representation of all implications 
between the attributes (via its intents)” (44, p.497). The 
lattice may be drawn as a line or Hasse diagram. The line 
diagrams in figure 4 are from our implementation, called 
MCRDR/FCA. The concepts are shown as small circles 
and the sub/superconcept relations as lines. Each concept 
has various intents and extents associated with it. In 
MCRDR\FCA it is possible to display the concept, 
attribute/s or object/s belonging to each node, or as in 
Figure 4, all three dimensions can be displayed 
concurrently. It is also possible to click on an individual 
node to see the concept number and all of its extents and 
intents. The labeling provided has been reduced for 
clarity. All intents of a concept β are reached by 
ascending paths from β and all extents are reached by 
descending paths from the concept β. 

4. Adding modeling tools to RDR using Formal 
Concept Analysis 
RDR and FCA both see that KA should be a task 
primarily performed by the expert, since models are 
imperfect representations of the world and greatly prone 
to variation between experts and even with one expert 
over time [12]. Both techniques reduce modeling to the 
tasks of classifying objects (cases) and identifying the 
salient features. However, they approach classification 
from alternative perspectives. FCA is concerned with 
identifying the similarity between objects, the 
conjunction of sets of attributes. RDR looks at differences 
between cases (objects) and is conceptually close to 
research based on based on Personal Construct 
Psychology [21] using Repertory Grids [12] and the use 
of a discernability matrix in Rough Sets [29].  

RDR and FCA place a strong emphasis on the importance 
of knowledge in context, a view supported by much of 
the knowledge reuse community [16],[28]. Compton and 
Jansen [5] found that experts do not offer explanations of 
why they made a decision rather they offer a justification 
and that justification will depend on the situation. FCA is 
also “guided by the conviction that human thinking and 
communication always take place in contexts which 
determine the specific meaning of the concepts used” [45, 
p.23].  

FCA differs from RDR in that some consideration of the 
whole domain is required, as does Repertory Grids [12], 
and does not consider incremental maintenance. On the 
other hand, the RDR structure is designed for incremental 
acquisition and validation. The RDR approach to KA, 

which simply involves the classification of cases and 
identification of features is probably less demanding for 
experts than the development of crosstables. 

As discussed in section one, the motivation for adding 
FCA tools to RDR was because certain modes of use 
required the ability to understand the relationships and 
models inherent in the RDR rules. The following 
discussion refers to an enhanced version of MCRDR for 
Windows written in Visual C++ and Visual Basic, known 
as MCRDR/FCA. The screen shown in figure 3 used a 
60-rule Blood Gases KBS that had been developed from 
the cornerstone cases associated with the 2000+ PEIRS 
rules1 to evaluate the performance of MCRDR with RDR.  

FCA starts with the definition of a formal context. We 
wanted to use the rules we already had in our KBS to 
form a context. To enable this, the RDR KBS was 
converted to a flat structure by sequentially traversing the 
KB for each rule picking up the conditions from the 
parent rule until the top node with the default rule was 
reached. From this flattened KBS the user chose either 
the whole KB or a more narrow focus of attention from 
which to derive a formal context. When the whole KB 
was chosen the rules and rule clauses formed the extents 
and intents, respectively. Such a global view is only 
feasible for small, if not very small, KBS. As with any 
graphical representation, as the number of rules being 
modeled grew, the line diagram became too cluttered to 
be comprehensible. This was the case even with the 
relatively small Blood Gases KBS. Therefore, to limit the 
concepts to a manageable size that could be viewed in a 
matrix or a line diagram the user was asked to narrow 
their focus of attention to a particular rule or conclusion. 
The decomposition of a concept lattice into smaller parts 
is a strategy that has previously been found useful [42]. 
Our approach is similar to that proposed by Ganter [14] 
where the context is shortened to find subcontexts and 
subrelations.  

The current implementation has 13 various ways a user 
can generate a context. The simplest of these options are 
selecting an individual rule or conclusion. If the user 
selected a conclusion, all rules using the specified 
conclusion were selected and added as objects to the set 
G, forming the extents of the context. As each extent was 
added the clauses of the rules were added to the set M of 
attributes to form the intents of the context, first checking 
                                                           
1 It would have been interesting to use the 2000+ PEIRS 
rules. This was not done at this time because they are not 
in the MCRDR format used by this study. 
 



to see if any attributes had already been added by 
previous rules. Where the relation I held, that is object g 
had attribute m, a cross was marked in the appropriate 
row and column. If the user chose a particular rule then 
that rule was added as the first object with the rule 
clauses as the initial intension. Every clause in each rule 
in the flattened RDR rule base was searched for a match 
on the initial set of attributes. If a match was found, that 
rule was added to the extension and all new attributes 
(clauses) found in the matching rule were also added to 
the intension. The result was a formal context K 
comprised of a set of objects G and attributes M 
connected by the binary relation I.  

 
Treating the rule clause, which is actually an attribute-
value pair, as a boolean or condition attribute is similar to 
the technique known as conceptual scaling [15] which 
has been used to interpret a many-valued context into a 
(binary) formal context. A many-valued context, such as 
that represented in an RDR KBS, is a quadruple 
(G,M,W,I) where I is a ternary relation between the set of 
objects G, the set of attributes M and the set of attribute 
values W (merkmalsWerte in german). Essentially, each 
attribute is treated as a separate formal context with the 
values as attributes associated with each of the original 
objects. A scale is chosen, such as a nominal scale (=) or 
an ordinal scale (≥), to order these attributes. From the 
many contexts, one for each attribute, the concepts are 
derived.  

The crosstable generated in the above process was then 
used to construct all formal concepts of the formal 
context, using the process described in section 2. To 
allow drawing of the Hasse diagram it was necessary to 
compute the predecessors and successors of each concept. 

Predecessors were found by finding the largest 
subconcept of the intents for each concept. Successors 
were found by finding the smallest superconcept of the 
intents. The successor list was used to identify concepts 
higher in the diagram, the parents, and the predecessor 
list identified concepts lower in the diagram, the children. 
As Wille [44] points out, there is not one fixed way of 
drawing line diagrams and often a number of different 
layouts should be used because concepts can be viewed 
and examined in different ways depending on their 
purpose and meaning. In MCRDR/FCA the nodes may be 
repositioned anywhere providing the node is not moved 
higher than any of its parents or lower than any of its 
children.  

In addition to use of the Blood Gases domain, the system-
to-date has been evaluated on two other domains. One of 
these domains, known as LOTUS, concerns the 
adaptation and management of the Lotus Uliginosis cv 
Grasslands Maku for pastures in the Australian state of 
New South Wales. The knowledge is being recorded into 
four KBS by four independent agricultural advisors as a 
way of consolidating knowledge about this emerging 
domain [18]. The other domain was the geology domain 
being used for the SISYPHUS III experiments. Both 
domains provided an opportunity to test whether we 
could use MCRDR/FCA to compare and combine the 
conceptual models of multiple experts. There is 
insufficient space here to report our results but we will 
look briefly at the two main tools we used to assist the 
omparison of conceptual models: the concept matrix and 
the line diagram. The discussion is restricted to LOTUS. 

From the concept matrices for the LOTUS KBS it was 
possible to see that all KBS share a number of concepts. 
There was a visual pattern that could be seen between all 
KBS and it was possible to identify any rows (concepts) 
in one KBS that did not match with other KBS. By 
looking at the matrix the experts are able to see not only 
what attributes (intents) and conclusions (extents) others 
consider important but also the relationship between them 
and how it affects other conclusions. As in Figure 3, we 
have replaced the labels of the intents and extents with 
numbers to fit the whole concept on the screen at the 
same time. However, it is difficult to understand the 
knowledge being modeled without labeling. To assist the 
user it is possible to drop down a list of attributes and/or 
objects with their corresponding numbers or to click on 
the number to get the corresponding full label.  

 
Figure 3: The Concept Matrix Screen from 
MCRDR/FCA. Here the user is shown the concepts for 
the context generated from the rules which conclude 
MC002 for the blood gases domain. 



 

 
Figure 4: The line diagrams for Lotus1 and Lotus2 KBS. 

 

The line diagrams for two of the LOTUS KBS are shown 
in Fig. 4. Although the labeling clutters the screen the 
extra information is important in understanding the 
diagram presented. The line diagram provides a more 
hierarchical understanding of the sub and super 
relationships in the domain. We can see that Lotus1 and 2 
have 11 and 14 concepts, respectively and that the three 
concepts that are different are concepts number 9, 10 and 
11 in the Lotus2 KBS. These concepts have introduced 
new attributes and conclusions (objects) not used by the 
Lotus1 KBS. The structure of the knowledge in both KBS 
is very similar with four levels of concepts in both. Even 
though concepts 2, 3 and 4 in both KBS appear to be 
slightly different structurally, due to inheritance of 
attributes on higher paths, both advisors consider that 
when (LOW_PH=YES) and (RYEGRASS>=15) the 
conclusion should be %NC000 No Conclusion. The 
concept matrix, and even more so the line diagram, 
provide succinct but powerful tools for analysing 
conceptual models. To facilitate comparison it was 
important to ensure the attributes shared by all contexts 
were in the same order before the concepts were 
determined. 

  

5.  Discussion and Future Directions 

We can see from the examples presented that the 
inclusion of FCA tools into RDR supports the derivation 
of concepts and the relationships between them without 
the need for prior modeling of those concepts. While 
these preliminary results appear promising, we are just 
starting our investigations. As mentioned in section 4, the 
formulation of concept lattices from many-valued 
contexts requires their interpretation into a formal 
context. While the approach we took was straightforward 
there may be situations were a rule is relevant but has not 
been included in a context because it does not match on a 
conclusion or attribute already selected. The use of 
different conceptual scales [15] may provide a solution. 
Another method we have considered is using a distance-
weighted nearest neighbour algorithm to assign a score to 
clauses to find the closeness of rules and/or conclusions 
to one another, which could be used to determine which 
rules should be added to a context.  

Other related research that will be considered includes: 
the use of rough sets to find relationships in KBS [31]; a 
comparison of concept lattices to concept maps [13]; the 
use of attribute exploration for acquisition of formal 
contexts [43] and review of work which combined the use 



of repertory grids and FCA [39]. A review of these 
approaches may reveal if the study of similarities or 
differences between objects is more useful in a practical 
sense and what are the relative benefits of each.  
 
The usefulness of FCA to support the reuse of knowledge 
in RDR KBS is the key issue that remains to be 
investigated. We want to see if we are able to use the 
matrix or hierarchy to provide a measure of closeness 
between concepts so that we could use the system for 
critiquing and also as a means of assisting the user with 
KA. A major benefit of providing such a powerful 
browsing tool would be the ability to perform what-if 
analysis. The pathways shown in the graphs and the 
proposed enhancement to allow zooming and selection of 
specified nodes would enable the user to test out different 
scenarios by dropping or adding attributes and exploring 
different pathways. The next step in this study is to 
evaluate if and how the FCA tools facilitate reuse and 
what further enhancements are necessary. This will 
require better definition of the requirements of each mode 
of use and a benchmark test that evaluates how well 
MCRDR/FCA has performed. 
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