
Annotating Websites with Machine-processable Information
in Controlled Natural Language

Rolf Schwitter and Marc Tilbrook
Centre for Language Technology

Macquarie University
Sydney, 2109 Australia

{schwitt|marct}@ics.mq.edu.au

Abstract
In this paper we present a user friendly approach to an-
notate websites with machine-processable information in
controlled natural language. The controlled natural lan-
guage serves as a high-level specification and knowledge
representation language which allows human annotators
to summarise individual web pages of a website and to
express domain-specific ontological knowledge about that
website in an unambiguous subset of English. The annota-
tion process is backed up by an intelligent text editor
which supports the writing process of the controlled natu-
ral language with the help of text- and menu-based pre-
dictive interface techniques. The text editor runs as a Java
applet and is connected over the Internet to a controlled
natural language processor and to a reasoning service
(consisting of a theorem prover and a model builder). The
controlled language processor translates the summaries of
web pages and the ontological knowledge about a website
into first-order predicate logic and the reasoning service
combines this information into a set of micro theories for
consistency and informativity checking as well as for
question answering. Specification texts written in con-
trolled natural language are both human-readable and
machine-processable, and can be easily exported and dis-
tributed as web feeds.

Keywords: Knowledge Representation, Ontologies, Con-
trolled Natural Languages, Theorem Proving, Model Buil-
ding, Question Answering

1 Introduction
It has been argued that the current architecture for the
Semantic Web, with its strong emphasis on RDF for syn-
tactic and semantic compatibility, has severe problems
when expressive Semantic Web (reasoning) languages are
incorporated (Patel-Schneider 2005). An alternative ap-
proach is to use conventional first-order logic as the se-
mantic underpinning for the Semantic Web. First-order
logic is well understood, and well established subsets of
first-order logic offer tradeoffs with respect to expressive
power, complexity and computability (Horrocks and
Patel-Schneider 2003). For example, the direct mapping
of description logic-based ontology languages and Horn
rule languages into subsets of first-order logic provides

Copyright (c) 2006, Australian Computer Society, Inc. This
paper appeared at the Australasian Ontology Workshop (AOW
2006), Hobart, Australia. Conferences in Research and Practice
in Information Technology, Vol. 72. M. A. Orgun and T.
Meyer, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

immediate semantic interoperability and builds the pre-
requisite for efficient reasoning (Grosof, Horrocks, Volz,
and Decker 2003). Instead of relying on RDF, we suggest
using a machine-oriented controlled natural language
which is based on first-order logic as an interface lan-
guage to the Semantic Web. To promote our approach,
we will introduce a prototype application, which uses a
controlled natural language to summarise web pages and
to augment these summaries with domain-specific onto-
logical knowledge. The result is a web feed which is easy
to read by humans in contrast to other formal languages
and as easy to process by a machine as other formal lan-
guages.

The rest of this paper is structured as follows: In Section
2, we briefly explain what controlled natural languages
are, for what they can be used, and what kind of problems
they can solve. In Section 3, we present PENG, a ma-
chine-oriented controlled natural language that looks
seemingly informal, but can be unambiguously processed
as a formal specification language. In Section 4, we in-
troduce PENG Online, an intelligent text editor, which
supports the writing of web page summaries and the
specification of ontological knowledge in controlled natu-
ral language. In Section 5, we look at some details of the
controlled natural language processor which is used by
PENG Online to translate the controlled natural language
into first-order predicate logic. In Section 6, we touch on
the reasoning service which accomplishes several rea-
soning tasks. In Section 7, we show that a web feed speci-
fication in controlled natural language can directly be
exported as an RSS feed, and finally in Section 8, we
conclude and summarise the advantages of our approach.

2 Controlled Natural Languages
In general, a controlled natural language is a subset of a
full natural language with explicit restrictions on the
grammar, lexicon, and style. These restrictions usually
have the form of writing rules and help to reduce (or even
exclude) ambiguity and to cut down the complexity of
full natural language. Traditionally, controlled natural
languages fall into two categories: human-oriented and
machine-oriented controlled natural languages. Human-
oriented controlled natural languages (for example ASD
Simplified Technical English (ASD 2005)) aim at im-
proving text comprehension for human readers while ma-
chine-oriented controlled natural languages (for example
Common Logic Controlled English (Sowa 2004)) focus
on improving text processability for machines. An im-
portant difference between human-oriented and machine-

oriented controlled natural languages is that the writing
rules for machine-oriented controlled natural languages
must be precise and computationally tractable (Huijsen
1998). However, as a rule of thumb, simplification works
in both ways: human-oriented controlled natural lan-
guages are also easier to process by machines and ma-
chine-oriented controlled natural languages are also easier
to understand by humans compared to full natural lan-
guage.

3 PENG (Processable ENGlish)

PENG is a machine-oriented controlled natural language
designed for writing unambiguous and precise specifica-
tion texts for knowledge representation (Schwitter 2002,
Schwitter 2004, Schwitter 2005). PENG covers a strict
subset of standard English and is precisely defined by a
controlled grammar and a controlled lexicon. Specifica-
tion texts written in PENG are incrementally parsed using
a unification-based phrase structure grammar and then
translated into first-order predicate logic via discourse
representations structures (Kamp and Reyle 1993,
Schwitter and Tilbrook 2004). In the general case, the
result is a logic theory which can be checked for consis-
tency and informativity as well as be used for question
answering. In contrast to other machine-oriented con-
trolled natural languages (Pullman 1996, Fuchs,
Schwertel and Schwitter 1999, Holt, Klein and Grover
1999, Sowa 2004), the author of a PENG text does not
need to know the grammatical restrictions of the language
explicitly. The text editor of the PENG system dynami-
cally enforces these restrictions while the text is written
and displays the interpretation of a sentence in the form
of a paraphrase in controlled natural language.

3.1 The Philosophy of PENG
The language PENG can be used as a high-level specifi-
cation and knowledge representation language. Specifi-
cation texts written in PENG look seemingly informal on
the surface level, similar to full English, but in contrast to
full English the language is designed to bring about the
same precision and formality as a formal specification
language. All sentences in PENG are correct English but
only an unambiguous subset of English sentence struc-
tures and verb form-types are allowed in PENG. For ex-
ample, PENG restricts the use of verb form-types in con-
trast to full natural language. In PENG verbs can only be
used in their active voice, in their indicative mood, and in
their simple present tense. Furthermore, modal verbs
(such as can, must, should, etc.) and intensional verbs
(such as believe, seek, want, etc.) are not allowed, since
the underlying formal language does not immediately
support modalities or intensional contexts. All seemingly
ambiguous constructions in PENG are interpreted in a
principled way and the interpretation is reflected in an
unambiguous paraphrase. In summary: PENG has been
carefully designed to be easy for humans to read and to
write and easy for machines to process.

3.2 The Grammar of PENG
The grammar of PENG defines how words and their con-
stituents combine to form simple sentences, complex

sentences and questions. In our scenario simple and com-
plex sentences are used to summarise web pages and to
specify ontological information about a website. Ques-
tions are then used to interrogate various aspects of the
resulting micro theories, for example to query the exis-
tence of a situation or to find specific entities which are
part of a situation.

3.2.1 Simple Sentences
Simple sentences have a hierarchical structure consisting
of words and constituents whereas each word is itself a
constituent. Several constituents can be joined together in
a controlled way to form simple PENG sentences. Con-
stituents can be distinguished according to their function
and their form. In the subsequent sentence:

1. Bill Smith reboots the webserver on Monday.

the constituent Bill Smith functions as the subject of the
sentence and its form is a noun phrase. The constituent
reboots the web server on Monday functions as the predi-
cate of the sentence with the verb reboots as predicator
while the constituent’s form is a verb phrase. The func-
tional dependents of the predicator within the verb phrase
are of two kinds: complements and adjuncts. The con-
stituent the webserver functions as a necessary comple-
ment of the predicator and its form is again a noun
phrase. Finally, the constituent on Monday functions as
an optional adjunct of the predicator (since the sentence is
syntactically well-formed without this constituent) and its
form is a prepositional phrase.

At the highest level, simple PENG sentences are com-
posed of the following functional units:

 subject + predicator + complements + adjuncts

Instantiations of this functional pattern are, for example,
sentences such as:

2. Bill Smith works.

3. Bill Smith maintains Apache.

4. Bill Smith works at Macquarie University.

5. Bill Smith is a diligent research programmer.

6. Bill Smith who is a diligent research program-
mer works at Macquarie University.

7. The supervisor of Bill owns a BMW.

8. The research programmer owns a Sony laptop.

Sentence (2) shows the simplest possible structure of a
PENG sentence consisting of a noun phrase (Bill Smith)
in subject position and an intransitive verb (works) in
predicator position. In sentence (3), a transitive verb
(maintains) subcategorizes for a noun phrase (Apache)
which occurs in complement position. In sentence (4), a
prepositional phrase (at Macquarie University) occurs in
adjunct position and modifies the verb (works) or better
the underlying verbal event. In sentence (5), an adjective
(diligent) occurs as a pre-nominal modifier of a complex
noun (research programmer). In sentence (6), a relative
sentence (who is a diligent research programmer) occurs
as a post-nominal modifier of a proper noun (Bill Smith)

and constitute together a noun phrase. In sentence (7),
the of-construction marks the noun (supervisor) as a rela-
tional noun with two arguments. In sentence (8), the noun
phrase (the research programmer) in subject position is
definite and the noun phrase (a Sony laptop) in comple-
ment position is indefinite. Definite noun phrases can be
used to refer to previously introduced objects and indefi-
nite noun phrases introduce new objects into the universe
of discourse.

3.2.2 Complex Sentences
In PENG, complex sentences are built from simpler con-
stituents and sentences with the help of a small number of
constructors (coordinators, subordinators, quantifiers and
negation markers). The subsequent sentences are exam-
ples of complex sentences:

9. Bill Smith works at Macquarie University and
maintains a webserver.

10. Bill Smith owns a Sony laptop or an Apple iPod.

11. Bill Smith is not a staff member.

12. No research programmer is a staff member.

13. Every research programmer owns a laptop.

14. If X is a research programmer then X is a pro-
grammer.

15. If X is a research programmer then X is not a
staff member.

16. Every research programmer is a programmer.

17. If X buys Y then X acquires Y.

In sentence (9), two verb phrases are coordinated by
means of the conjunctive coordinator and. In sentence
(10), two verb phrases are coordinated by means of the
disjunctive coordinator or. In sentence (11), the negation
marker not negates the entire verb phrase in complement
position and in (12) the negation marker no negates the
entire noun phrase in subject position. In sentence (13),
the universal quantifier every is used to speak about all
objects which belong to a specific class. In sentence (14),
(15) and (17), the subordinator if introduces the antece-
dent of a conditional statement. Note that sentence (14)
and sentence (16) are logical equivalent. The only differ-
ence between these two sentences is that the universally
quantified variable (X) is made explicit in sentence (14)
on the surface of the controlled natural language. This is a
powerful mechanism to generate class hierarchies (see for
example (14)) and property hierarchies (see for example
(17)) in controlled natural language. As we will see later,
this mechanism allows us to also – among other things –
specify domain and range restrictions of properties.

3.2.3 Questions
In PENG, questions can be used to query the content of a
specification text. Questions are systematically derived
from simple and complex sentences to extract informa-
tion from the constituents of these sentences and to guar-
antee wide coverage for question answering. Formally,
yes/no-questions are built via subject-operator inversion

and wh-questions are built by moving the interrogative
word (e.g. where, when, how) to the initial position in the
sentence, and where needed, by inserting the dummy do
operator after the interrogative word. The following are
examples of questions which can be used to interrogate a
specification text written in PENG:

18. Does Bill Smith work?

19. Who maintains a web server?

20. Where does Bill Smith work?

21. When does Bill reboot the webserver?

22. Is Bill Smith a programmer?

23. Is every research programmer a programmer?

24. Who maintains a web server and owns a laptop?

Yes/no-questions such as (18), (22) and (23) allow us to
check whether a specific situation is true or not and wh-
questions such as (19), (20), (21) and (24) allow us to
interrogate a specific aspect of a situation (for example
finding a person who is involved in an event, a specific
location or a point in time).

3.3 The Lexicon of PENG
The controlled lexicon of PENG consists of a base lexi-
con and a user lexicon. The base lexicon contains the
most frequent content words of English (proper nouns,
common nouns, verbs, adjectives, and adverbs) and pre-
defined function words (determiners, prepositions, coor-
dinators, subordinators, negation and disambiguation
markers) which build the syntactic scaffolding of the
controlled natural language. The base lexicon also con-
tains illegal words (which cannot be processed by the
PENG system). The user lexicon can be extended with
domain-specific content words by the annotator while a
text is written in controlled natural language.

4 PENG Online
PENG Online implements the web-based version of the
PENG editor. The editor features built-in browser func-
tionality for viewing web pages. It also provides a layout
for expressing ontological knowledge about a website and
for summarising the content of individual web pages
which belong to that website. The editor can be used to
create and update machine-processable descriptions of
websites and to export them as web feeds in RSS format.

4.1 Architecture
PENG Online is based on a client-server architecture
which consists of three main components: an intelligent
text editor, a controlled natural language processor, and a
reasoning service.

The web-based editor is implemented as a Java applet
which runs in a web browser and communicates with a
Prolog server via a socket interface. The Prolog server
implements the controlled natural language processor and
the reasoning service.

The controlled language processor incrementally trans-
lates specification texts into first-order predicate logic via
discourse representation structures and generates predic-
tive look-ahead information for the text editor as well as
paraphrases for the input text.

The reasoning service makes use of SRI’s Open Agent
Architecture (OAA) where a facilitator coordinates a
number of agents (Martin, Cheyer, and Moran, 1999,
Cheyer and Martin, 2001). In our case, the reasoning in-
terface agent fuses the summaries of web pages and the
ontological knowledge about the website into a set of
micro theories. These micro theories are sent to the fa-
cilitator which utilises a model builder agent and a theo-
rem prover agent. These two reasoning agents comple-
ment each other and can check the micro theory for either
consistency or informativity. These can also be utilised as
a starting point for question answering.

The ontological knowledge about a website and the tex-
tual summaries of the individual web pages can be ex-
ported as a web feed in RSS format. Since the informa-
tion is available in controlled natural language and fully
human readable, any RSS feed aggregator can subscribe
to such a web feed. However, the full benefit of having a
machine-processable controlled natural language can only
be brought into effect by a PENG-compliant tool which
can reprocess these web feeds.

4.2 The PENG Editor
The PENG editor provides a standard mode and a web
feed mode. The standard mode can be used to write nor-
mal specification texts in controlled natural language. The
web feed mode is specially designed to annotate websites
in controlled natural language. When the annotator selects
the web feed mode, the text editor asks if the current user
lexicon should be used for the new task or if a new user
lexicon should be created. Once selected, the editor dis-
plays the interface of the feed mode as shown in Figure 1:

Figure 1: The PENG Editor in Web Feed Mode

This interface has a tabbed pane containing an ontology
pane for the specification of the ontological knowledge
about a website and one or more summary panes for the
description of those individual web pages which are part
of the website. Below the tabbed pane there is a message
field for the system feedback and above the tabbed pane
is a question field for asking questions about various as-
pects of a feed specification. The annotator can view a
website using the built-in browser of the text editor which
is available form the tools menu in the menu bar.

4.2.1 The Ontology Pane
In Figure 1, the ontology pane is active but still empty.
This pane contains a title field for the name of the web
feed, a link field for a URL to the HTML web page that
corresponds to the channel, a lexicon field for a URL that
points to the (exported) user lexicon of the controlled
natural language, and a description field for the specifi-
cation of the domain-specific ontological knowledge
about a website. For example, the following complex
PENG sentences express ontological knowledge about a
website:

25. If X is a research programmer then X is a pro-
grammer.

26. If X is a research programmer then X is not a
staff member.

27. If X is a staff member then X is not a research
programmer.

28. If X maintains Y then X is a programmer and Y
is a webserver.

29. If X maintains Y then X looks after Y.

Sentence (25) specifies a hierarchical class relationship
between the subclass research programmer and the su-
perclass programmer. The two sentences (26) and (27)
specify that the two classes research programmer and
staff member are disjoint. In Sentence (28), the verb (=
property) is restricted in its domain by the class pro-
grammer and in its range by the class webserver. That
means that only individuals that belong to the class pro-
grammer can occur in the subject position and only indi-
viduals that belong to the class webserver can occur in the
complement position. Finally, in sentence (29), a hierar-
chical property relationship between the transitive verb
maintains and the prepositional verb looks after is speci-
fied. Please note that all these sentences fall under the
description logic subset of the controlled natural language
(for details see Schwitter and Tilbrook 2006).

4.2.2 The Summary Pane
In Figure 2, the summary pane is active. This pane con-
tains a title field for the name of a web page, a link field
for the URL which points to the original web page and a
description field for the summary of a web page in con-
trolled natural language:

Figure 2: The Summary Pane

As this example illustrates, the annotator already added
the title of the web page to the title field and the URL of
the original web page occurs in the link field. The de-
scription field so far contains the following two sen-
tences:

30. Bill Smith is a research programmer.

31. Bill works at the Center for Language Technol-
ogy which is located at Macquarie University.

These sentences describe parts of the original web page
(see Figure 3) that is currently open for annotating in the
browser. Note that the message field in Figure 2 contains
look-ahead information that informs the annotator about
how the current specification text can be continued (for
details see Section 4.2.3).

Figure 3: Excerpt of the Original Web Page

Note that not all of the information in the original web
page can be represented in controlled natural language.
The idea is to produce a machine-processable summary of
a web page that can be easily read by humans and effi-
ciently processed by a machine. This requires a careful
tradeoff between expressiveness and processability of the
controlled natural language.

4.2.3 Writing in PENG
The form of the input to the description field of both the
ontology pane and the summary pane is restricted by the
language processor of PENG. The language processor
generates look-ahead information for each word form that
the annotator enters while the specification text is written.
This look-ahead information consists of syntactic catego-
ries which predict what kind of input can follow the cur-
rent word form. The look-ahead categories are imple-
mented as hypertext links. By clicking on a look-ahead
category the author is able to access help information.
The author composes a sentence either by typing the
word forms which fall under the look-ahead categories or
by selecting word forms from a cascade of menus
(Schwitter, Ljungberg and Hood 2003, Thompson,
Pazandak and Tennant 2005).

Please note that the look-ahead categories are generated
on the fly and use linguistic information produced by the
incremental chart parser of the controlled language proc-
essor. The processing of these look-ahead categories does
not slow down the author significantly while typing the
text and happens in near real-time (ca. 140 milliseconds
on average per word form).

The look-ahead categories in Figure 2 indicate that the
author can continue the specification text, for example,
using a proper noun as in (32), a determiner as in (33), a

cardinal number as in (34), or a specific subordinator as
in (35):

32. … at Macquarie University. Bill …

33. … at Macquarie University. The …

34. … at Macquarie University. Two …

35. … at Macquarie University. If …

Instead of typing an approved word form into the de-
scription field of the editor, the author can alternatively
select a word form from the currently active look-ahead
categories via the context menu as Figure 4 illustrates:

Figure 4: Active Look-ahead Categories

Once such a word form has been selected, it will be im-
mediately inserted into the text at the current cursor posi-
tion and the processing of the text is automatically re-
sumed. Not only can approved word forms be inserted in
this way, but also all noun phrases which are accessible in
the specification text. Accessible noun phrases occur in
the context menu and can be selected from there. Figure 5
shows that after the processing of sentence (30) and (31)
the following three noun phrases are available in the
context menu:

Figure 5: Accessible Noun Phrases

Please note that the noun phrase a research programmer
is not accessible here, since it forms a property together
with the copulative verb be and cannot be referred to by a
definite noun phrase.

4.2.4 The Message Field

The message field displays a paraphrase for each sentence
and clarifies the interpretation of the input – if this option
is selected. The paraphrase indicates, for example, if
synonyms or anaphoric expressions have been used in the
text. Let us assume that the author added the following
two sentences to the description field:

36. Bill has a homepage.

37. The page contains a picture of Bill.

And let us further assume that the noun page has previ-
ously been defined as a synonym of its main form home-
page in the user lexicon. After processing this informa-

tion, the paraphrase in the message field will indicate – as
Figure 6 illustrates – that the noun phrase the homepage
and the proper noun Bill are two anaphoric expressions
which have been previously introduced in the text and
that the synonym page has been replaced, respectively
normalized, by its main form homepage.

Figure 6: Paraphrase in Controlled Natural Language

Additionally, the message field displays the syntax tree
for the last input sentence, the actual discourse represen-
tation structure for the entire text and its representation in
first-order predicate logic. Furthermore, the message field
shows the output of the reasoning engine (the proof or the
model) and the specific result (for example the answer to
a question). Not all of this information is relevant for the
annotator and parts of this information can therefore be
selectively removed.

4.2.5 The Question Field

The purpose of the question field is to interrogate a web
feed in controlled natural language. As Figure 7 illus-
trates, the question field uses the same kind of look-ahead
mechanism to guide the writing process as the description
fields of the ontology and the summary pane.

Figure 7: Question Field with Look-ahead Categories

Once a question is completely formulated, it is translated
into first-order predicate logic via discourse representa-
tion structures (similar to simple and complex sentences),
combined with the micro theories, and answered with the
help of PENG’s reasoning service.

4.2.6 The Lexical Editor
Part of the text editor is a lexical editor for adding user-
specific content words. If the author enters a content word
(i.e. proper noun, common noun, verb, adjective or ad-
verb) into the text editor which is not yet available in the
lexicon and is not in the list of illegal words, then this
content word needs to be added to the user lexicon of the
PENG system. The interface to the lexical editor has been
designed in such a way that only minimal linguistic
knowledge is required by the author to add a new content
word to the lexicon. As soon as a new content word is
available in the lexicon, the parsing process is resumed.
User-defined content words can also be deleted from the
user lexicon, but the author cannot delete words in the
base lexicon of the PENG system which contains the
most frequent 3000 words of English as well as all prede-
fined function words. Note that the existing user lexicon
(or a new user lexicon) is exported once the web feed is
complete.

5 The Controlled Language Processor
When the author types a word form into the text editor,
this word form is immediately sent to the incremental
chart parser of the controlled language processor. The
chart parser uses a unification-based phrase structure
grammar as syntactic scaffolding (Schwitter 2003,
Schwitter and Tilbrook 2004). As Figure 8 shows, the
phrase structure rules of the grammar are highly param-
eterised.

Figure 8: A Phrase Structure Rule

The beauty of this approach is that it allows us to deal
with syntactic, semantic and pragmatic information con-
currently and in the same logic-based framework. The
grammar currently consists of about 150 such phrase
structure rules. During parsing the incremental chart
parser generates a chart which can be used to harvest the
look-ahead information for the text editor. The other im-
portant information in the chart is the discourse repre-
sentation structure which represents the meaning of the
text. For example, the two sentences (36) and (37) re-
peated here as (38) and (39)

38. Bill Smith has a homepage.

39. The page contains a picture of Bill Smith.

result in the following (simplified) discourse representa-
tion structure:

Figure 9: Simplified Discourse Representation Structure

whereas the variables A, B, C, and D represent discourse
referents and the predicates conditions which hold for
these discourse referents. Discourse representation theory
(Kamp and Reyle 1993) allows us to deal in an elegant
way with anaphoric references between sentences. Such
discourse representation structures can be translated in
linear time into a set of first-order logic formulas. These
first-order logic formulas can then be further processed
by the reasoning service of the PENG system as we will
describe in the next section.

6 The Reasoning Service
One possible setting of the reasoning service is to use the
theorem prover Otter (McCune 2003a) in combination
with the model builder Mace4 (McCune 2003b) for con-
sistency and informativity checking as well as for ques-
tion answering (Bos 2003, Blackburn and Bos 2003,
Blackburn and Bos 2005). Another interesting option we

are currently exploring but that we will not further dis-
cuss here is to use Satchmo instead of Otter and Mace4 as
reasoning service (see Manthey and Bry 1988 and in par-
ticular Fuchs and Schwertel 2003 for a discussion).

The idea of using a theorem prover and a model builder
in combination has been explored for other (natural) lan-
guage processing tasks, for example for solving logical
puzzles (Schwitter 2002, Lev, MacCartney, Manning, and
Levy, 2004) and as a spoken language interface to a robot
and in an automated home environment (Bos 2006).

6.1 Otter and Mace
Otter is an automated theorem prover for first-order logic
with equality that searches for a refutation of a set of
formulas and is designed to detect inconsistency (or un-
satisfiability) of a theory. Mace4 is a model builder that
searches for finite models of first-order formulas for a
given domain size and its task is to check for satisfiability
of a theory.

Otter and Mace4 can work on the same problem at the
same time and complement each other. If Otter can find a
proof for the negation of a set of formulas, then Mace4
has to do an exhaustive search that does potentially not
terminate. In this case, Otter can inform Mace4 to stop
searching for a model as soon as it found a proof. In a
similar way, if Mace4 can build a finite model for the
formulas, then Otter has to do an exhaustive search that
does potentially not terminate. In this case, Mace4 can
inform Otter to stop searching for a proof. Of course, the
problem of detecting whether a set of first-order formulas
is valid is not decidable and therefore we have to assign a
time limit on the search for both Otter and Mace4.

The input to Otter and Mace4 can be specified with first-
order formulas or first-order clauses or a combination of
both. If the input consists of non-clausal first-order for-
mulas, then the input is immediately further translated
into first-order clauses involving negation normal form
conversion, skolemisation, quantifier operations, and
conjunctive normal form conversion. In contrast to
Mace4, Otter has an interactive and an autonomous mode
for selecting search strategies and provides more options
to control the processing, but both accept similar input
files.

6.2 Otter and Mace in PENG
The PENG system translates the discourse representation
structures (which have been derived from the ontological
knowledge), the summaries, and the questions, into first-
order formulas. These formulas in turn are combined in
various ways depending on the reasoning task. In PENG,
we distinguish three reasoning tasks: consistency check-
ing, informativity checking and question answering. Each
task requires a specific preparation of the formulas which
results in a micro theory to be processed by Otter and
Mace4.

In our case, Otter runs in the autonomous mode and takes
a micro theory as input, translates the input into clauses,
scans the clauses and automatically decides on inference
rules and a search strategy. Mace4 takes the micro theory,

translates the input first into clauses and then into an
equivalent propositional problem which is then given to a
satisfiability procedure.

Before we discuss the various reasoning tasks in more
detail, let us assume that Φ is a set of first-order formulas
derived from the text in controlled natural language
which summarises a web page; Χ is a set of first-order
formulas derived from the text in controlled natural lan-
guage which describes the ontological knowledge about a
website; Ψ is a first-order formula derived from a new
sentence; and δ is a first-order formula derived from a
question stated in controlled natural language, and finally
Α is an answer literal. Answer literals record instantia-
tions of variables during Otter’s search for a refutation
proof and can be used to answer wh-questions.

6.2.1 Consistency Checking

A micro theory (Χ ∧ Φ) is consistent if and only if all
formulas can be satisfied together in some model with the
same variable assignment. In the case of Otter we need to
find out if ¬(Χ ∧ Φ) is valid and in the case of Mace4 we
need to find out if (Χ ∧ Φ) is satisfiable.

If we give the negation of the micro theory ¬(Χ ∧ Φ) to
Otter (thus we give it ¬¬(Χ ∧ Φ)) and it finds a proof for
this input, then we know that (Χ ∧ Φ) is not consistent. If
a micro theory is not consistent, then a theorem prover
like Otter will always succeed in finding a proof.

If we give the micro theory (Χ ∧ Φ) to Mace4 and it suc-
cessfully builds a finite model for this input, then we
know that (Χ ∧ Φ) must be satisfiable (= consistent). If a
micro theory is consistent and satisfiable on a finite
model, then a model builder like Mace4 will always suc-
ceed in building a model.

6.2.2 Informativity Checking

A new formula Ψ is informative with respect to a context
(Χ ∧ Φ) if and only if it is not a logical consequence of
this context (or not satisfiable in all models).

If we give the negation of the micro theory (Χ ∧ Φ → Ψ)
to Otter and it finds a proof for this input, then we know
that Ψ is not informative. If a new formula is not infor-
mative, then a theorem prover like Otter will always suc-
ceed in finding a proof.

If we give the micro theory (Χ ∧ Φ ∧ ¬Ψ) to Mace4 and
it builds a finite model, then we know that Ψ is informa-
tive. If a new formula is informative, then a model builder
like Mace4 will always succeed in building a model.

6.2.3 Question Answering
The simplest type of questions are yes/no-questions
which do not contain free variables. However, wh-ques-
tions contain free variables which need to be bound to
specific values during a proof. In order to accomplish
this, the translation of interrogative words in the case of
Otter results in answer literals which can be used to re-
cord instantiations of variables during a search for refuta-
tion. Mace4 does not provide such a mechanism, since

Mace4 is in fact a model builder and not a model checker
which could tell us wether the model satisfies a query or
not. However, Mace4 builds minimal models which are
not redundant and answers to questions can be looked up
immediately in the model once such a model exists.

If we give the micro theory ¬δ ∧ (Χ ∧ Φ) to Otter and it
finds a proof for this input, then we know that δ results in
a positive answer to a yes/no-question.

If we give the micro theory ¬(δ ∧ Α) ∧ (Χ ∧ Φ) to Otter
and it finds a proof for this input, then we know that the
variable bindings in the answer literal Α are results for a
wh-question.

If we give the micro theory (Χ ∧ Φ) to Mace4 and it
builds a finite model, then we can start searching for an-
swers to the question δ in this model. However, this proc-
ess requires a simple transformation of the model which
Mace4 generates into a model which corresponds to the
formal signature of the question.

6.2.4 An Example
We will now illustrate the reasoning abilities of the
PENG system by a few examples. Let us assume that Φ1
represents the two sentences:

• Bill Smith is a research programmer.

• Bill works at Macquarie University.

Φ2 represents the two sentences:

• Bill Smith is a research programmer.

• Bill Smith is not a programmer.

Ψ1 represents the new sentence:

• Bill Smith is a programmer.

Χ1 represents the ontological background information:

• If X is a research programmer then X is a pro-
grammer.

• If X is a research programmer then X is not a
staff member.

• If X is a staff member then X is not a research
programmer.

Furthermore, let us assume that δ1, δ2, δ3, δ4 and δ5 repre-
sent the five subsequent questions:

• Does Bill Smith work at Macquarie University?

• Is Bill Smith a programmer?

• Is Bill Smith a staff member?

• Who works at Macquarie University?

• Where does Bill Smith work?

If we want to check the micro theory (Χ1 ∧ Φ1) for con-
sistency and feed the negation of ¬(Χ1 ∧ Φ1) to Otter and
(Χ1 ∧ Φ1) to Mace4, then Mace4 will find a satisfiable
model and we can stop Otter searching for a proof. That
means we know that the micro theory is consistent.

If we want to check the micro theory (Χ1 ∧ Φ2) for con-
sistency and feed the negation of ¬(Χ1 ∧ Φ2) to Otter and
(Χ1 ∧ Φ2) to Mace4, then Otter will find a proof and we
can stop Mace4 looking for a finite satisfiable model.
That means we know that the micro theory is not consis-
tent.

If we want to check the formula Ψ1 for informativity with
respect to the context (Χ1 ∧ Φ1) and feed the negation of
(Χ1 ∧ Φ1 → Ψ1) to Otter and (Χ1 ∧ Φ1 ∧ ¬Ψ1) to Mace4,
then Otter will find a proof and we can stop Mace4 look-
ing for a model. That means we know that the theory is
not informative.

If we want to answer questions such as δ1-δ5, then we
have to negate the formulas derived from the questions,
before we combine them in a micro theory and feed them
to Otter, since Otter conducts a resolution proof. This is
not necessary for Mace4, since we can extract answers to
questions from the model in a separate step. Figure 10
shows the input to Otter for the question (theorem)

• Where does Bill Smith work?

given the information (axiom)

• Bill Smith works at Macquarie University.

without any additional background knowledge.

Figure 10: Input to Otter with Answer Literal

As the input to Otter shows the question has been negated
and an answer literal has been added. The answer literal

• -$answer([[where],F,I,E,H]).

retains the interrogative word and records the variable
bindings during the proof for the subsequent answer gen-
eration.

7 RSS Export
A web feed written in controlled natural language can be
exported as an RSS feed. RSS is a family of XML-based
web feed formats designed for sharing and aggregating
web content (RSS 2002). RSS feeds provide summaries
of web content together with links to the full versions of
the content. In our case, the specification texts written in
the web feed mode can be exported as an RSS feed.
Basically, an RSS feed is an XML document consisting
of an <rss> element with a single <channel> element,
which contains meta information about the channel and
its content, and any number of <item> elements, which
store the summaries of individual web pages. Let us have
a closer look at the general structure of an RSS feed that
is generated by PENG Online system:

Figure 11: Structure of RSS Feed

In our case the <channel> element uses six different
subelements for storing the meta information and one or
more <item> elements for storing information about
individual web pages. The first subelement of the <chan-

nel> element is the <language> element which stores the
information about the language the channel is written in.
In our case, the value x-peng denotes an experimental
language tag for the controlled natural language PENG.
The second subelement is the <generator> element
which indicates that the program used to generate the
channel is PENG Online. The third subelement is the
<title> element and specifies the title of the channel.
The fourth subelement is the <link> element which
contains the channel’s URL. The fifth subelement is the
<description> element which stores the ontological
knowledge about the web feed. The sixth subelement is
the <category> element which is empty in our case but
uses an attribute with a URL as value. The URL points to
the exported user lexicon which needs to be accessed
when the RSS feed is reloaded by the PENG system. In
our case, a <channel> element may contain one or more
<item> elements - one for each summary of a web page
which is part of the web site. The <item> element has a
<title> element as subelement which stores the title of
the web page and a <link> element which points to the
full version of the web page. Finally, the <description>
element of the <item> element stores the summary of the
web page in controlled natural language.

8 Conclusions
In this paper, we presented a new approach that allows
non-specialists to annotate individual web pages of a
website with machine-processable information in con-
trolled natural language and to augment these descrip-
tions with domain-specific ontological information in
controlled natural language. The writing process of these
specification texts is supported by a text editor which
uses predictive interface techniques. The text editor is im-
plemented as a Java applet and communicates over the
Internet with a language processor and a reasoning ser-
vice. The language processor provides look-ahead infor-
mation for the text editor and translates a specification
text into first-order predicate logic via discourse repre-
sentation structures. The resulting first-order formulas
can be combined for various reasoning tasks into micro
theories. These micro theories are processed by a rea-
soning service which combines a theorem prover together
with a model builder. The theorem prover provides a
negative check on consistency, informativity and ques-
tions, and the model builder provides a positive check for
the same inference tasks. It is important to note that Web
feeds written in PENG are both human-readable and ma-
chine-processable and can be maintained by non-special-
ists with the help of the PENG editor. Any RSS aggre-
gator can subscribe to such a "seemingly informal" web
feed, but the full processing power is only available via
PENG Online or another PENG-compliant tool.

Acknowledgments

The research reported here is supported by the Australian
Research Council, Discovery Project No. DP0449928.
We would also like to thank to three anonymous review-
ers for their valuable comments.

References
ASD (2005): ASD Simplified Technical English, Specifi-

cation ASD-STE100, A Guide for the Preparation of
Aircraft Maintenance Documentation in the Interna-
tional Aerospace Maintenance Language, Issue 3,
January.

Blackburn, P. and Bos, J. (2003): Computational Seman-
tics, in: Theoria 18(1), pp. 27-45.

Blackburn, P. and Bos, J. (2005): Representation and
Inference for Natural Language, A First Course in
Computational Semantics, CSLI Publications.

Bos, J. (2003): Exploring Model Building for Natural
Language Understanding, in: Proceedings of ICoS-4.

Bos, J. (2006): Three Stories on Automated Reasoning
for Natural Language Understanding, in: Proceedings
of ESCoR (IJCAR Workshop): Empirically Successful
Computerized Reasoning, pp. 81-91.

Cheyer, A. and Martin, D. (2001): The Open Agent Ar-
chitecture, in: Journal of Autonomous Agents and
Multi-Agent Systems, vol. 4, no. 1, March, pp. 143-148.

Fuchs, N. E. and Schwitter, R. (1996): Attempto Con-
trolled English (ACE), in: Proceedings of CLAW 96,

First International Workshop on Controlled Language
Applications, University of Leuven, Belgium, March
1996, pp. 124-136.

Fuchs, N. E., Schwertel, U. and Schwitter, R. (1999):
Attempto Controlled English – Not Just Another Logic
Specification Language, Lecture Notes in Computer
Science 1559, Springer.

Fuchs, N. E. and Schwertel, U. (2003): Reasoning in At-
tempto Controlled English, in: F. Bry, N. Henze and J.
Maluszynski (eds.): Principles and Practice of Seman-
tic Web Reasoning, International Workshop PPSWR
2003, Mumbai, India, pp. 174-188.

Grosof, B., Horrocks, I., Volz, R. and Decker, S. (2003):
Description Logic Programs: Combining Logic Pro-
grams with Description Logic, in: Proceedings of
WWW 2003, Hungary, ACM, pp. 48-57.

Holt, A., Klein, K. and Grover, C. (1999): Natural lan-
guage for hardware verification, in: Proceedings of
ICoS-1 workshop: Inference in Computational Seman-
tics, Institute for Logic, Language and Computation
(ILLC), Amsterdam, August, pp. 133-137.

Horrocks, I. and Patel-Schneider, P. F. (2003): Three the-
ses of representation in the semantic web, in: Pro-
ceedings of WWW 2003, Hungary, ACM, pp. 39-47.

Huijsen, W. O. (1998): Controlled Language – An Intro-
duction, in: Proceedings of CLAW 1998, Pittsburgh,
pp. 1-15.

Kamp, H. and Reyle, U., (1993): From Discourse to
Logic, Kluwer Academic Publisher.

Lev, I., MacCartney, B., Manning, C. D. and Levy, R.
(2004): Solving logic puzzles: from robust processing
to precise semantics, in: Proceedings of the ACL-04
Workshop on Text Meaning and Interpretation, pp. 9-
16.

Manthey, R. and Bry, F. (1988): SATCHMO: A Theorem
Prover Implemented in Prolog, in: Proceedings CADE
88, pp. 415-434.

Martin, D., Cheyer, A. and Moran, D. (1999): The Open
Agent Architecture: A Framework for Building Dis-
tributed Software Systems, in: Applied Artificial Intel-
ligence, vol. 13, no. 1-2, January-March, pp. 91-128.

McCune, W. (2003a): Otter 3.3 Reference Manual. Tech.
Memo ANL/MCS-TM-263, Mathematics and Com-
puter Science Division, Argonne National Laboratory,
Argonne, IL, August 2003.

McCune, W. (2003b): Mace4 Reference Manual and
Guide. Tech. Memo ANL/MCS-TM-264, Mathematics
and Computer Science Division, Argonne National
Laboratory, Argonne, IL, August 2003.

Patel-Schneider, P. F. (2005): A Revised Architecture for
the Semantic Web Reasoning, in: Proceedings of
PPSWR’05, Dagstuhl, Germany, LNCS 3703, pp. 32-
36.

Pulman, S. G. (1996): Controlled Language for Know-
ledge Representation, in: Proceedings of CLAW 96,

First International Workshop on Controlled Language
Applications, University of Leuven, Belgium, March
1996, pp. 233-242.

RSS 2.0 Specification (2002): Technology at Harvard
Law, Internet technology hosted by Berkman Center,
available at: http://blogs.law.harvard.edu/tech/rss.

Schwitter, R. (2002): English as a Formal Specification
Language, in: Proceedings of the Thirteenth Interna-
tional Workshop on Database and Expert Systems Ap-
plications (DEXA 2002), W04: Third International
Workshop on Natural Language and Information Sys-
tems - NLIS, 2-6 September 2002, Aix-en-Provence,
France, pp. 228-232.

Schwitter, R. (2003): Incremental Chart Parsing with
Predictive Hints, in: Proceedings of the Australasian
Language Technology Workshop 2003, December 10,
University of Melbourne, Australia, pp. 1-8.

Schwitter, R., Ljungberg, A. and Hood, D. (2003):
ECOLE - A Look-ahead Editor for a Controlled Lan-
guage, in: Proceedings of EAMT-CLAW03, Controlled
Translation, Joint Conference combining the 8th Inter-
national Workshop of the European Association for
Machine Translation and the 4th Controlled Language
Application Workshop, May 15-17, Dublin City Uni-
versity, Ireland, pp. 141-150.

Schwitter, R. (2004): Dynamic Semantics for a Con-
trolled Natural Language, in: Proceedings of the Fif-
teenth International Workshop on Database and Expert
Systems Applications (DEXA 2004), NLIS'04: 4th In-
ternational Workshop on Natural Language and Infor-
mation Systems, 30 August - 3 September 2004,
Zaragoza, Spain, pp. 43-47.

Schwitter, R. and Tilbrook, M., (2004): Dynamic Seman-
tics at Work, in: Proceedings of LENLS2004 (in con-
junction with the 18th Annual Conference of the Japa-
nese Society for Artificial Intelligence, 2004), in Kana-
zawa (Japan), May 31, pp. 49-60.

Schwitter, R. (2005): A Layered Controlled Natural Lan-
guage for Knowledge Representation, in: S. Cardey, P.
Greenfield and S. Vienney (eds.), Machine Translation,
Controlled Languages and Specialised Languages:
Special Issue of Linguisticae Investigationes, Vol. 28,
No. 1, pp. 85-106.

Schwitter, R. and Tilbrook, M. (2006): Let's Talk in De-
scription Logic via Controlled Natural Language, in:
Proceedings of the Third International Workshop on
Logic and Engineering of Natural Language Semantics
(LENLS2006) in Conjunction with the 20th Annual
Conference of the Japanese Society for Artificial Intel-
ligence, Tokyo, Japan, June 5-6, pp. 193-207.

Sowa, J. F. (2004): Common Logic Controlled English,
Draft, 24 February 2004, available at: http://www.
jfsowa.com/lce/specs.htm.

Thompson, C. W., Pazandak, P. and Tennant, H. R.
(2005): Talk to Your Semantic Web, in: IEEE Internet
Computing, Vol. 9, No. 6, pp. 75-79.

	1 Introduction
	2 Controlled Natural Languages
	3 PENG (Processable ENGlish)
	3.1 The Philosophy of PENG
	3.2 The Grammar of PENG
	3.2.1 Simple Sentences
	3.2.2 Complex Sentences
	3.2.3 Questions

	3.3 The Lexicon of PENG

	4 PENG Online
	4.1 Architecture
	4.2 The PENG Editor
	4.2.1 The Ontology Pane
	4.2.2 The Summary Pane
	4.2.3 Writing in PENG
	4.2.4 The Message Field
	4.2.5 The Question Field
	4.2.6 The Lexical Editor

	5 The Controlled Language Processor
	6 The Reasoning Service
	6.1 Otter and Mace
	6.2 Otter and Mace in PENG
	6.2.1 Consistency Checking
	6.2.2 Informativity Checking
	6.2.3 Question Answering
	6.2.4 An Example

	
	7 RSS Export
	8 Conclusions
	References

