Reconciling Use Cases via Controlled Language
and Graphical Models

Kathrin Bottger, Rolf Schwitter, Debbie Richards, Oscar Aguilera, and Diego
Molla

{kathrinb,schwitt,richards,aguilera,molla}@ics.mq.edu.au
Department of Computing
Macquarie University, Sydney, Australia

Abstract. In requirements engineering use cases are employed to de-
scribe the flow of events and the occurrence of states in a future in-
formation system. Use cases consist of a set of scenarios each of them
describing an exemplary behaviour of the system to be developed. Dif-
ferent stakeholders describe the steps in varying ways since they perceive
the state of affairs in the application domain from different viewpoints.
This results in ambiguous use cases written in natural language that use
different terminology and are therefore difficult to reconcile. To solve
this problem, use cases and scenarios are rewritten in a controlled lan-
guage following a simple set of guidelines. The sentences are processed
and translated into flat logical forms by the Prolog-based RECOCASE
system. These resulting flat logical forms can be used to generate graphi-
cal models for the elaboration and refinement of functional requirements
between project stakeholders. As an experiment we have chosen For-
mal Concept Analysis to present the viewpoints of different stakeholders
graphically in a concept lattice.

1 Introduction

It is well known that many software projects do not go as well as they are sup-
posed to - and some completely fail. One way to improve software development
is to pay more attention to the outcomes of the requirements definition phase
in the software development process. Requirements definition aims to establish
a shared understanding of all stakeholder requirements.

Conventional requirements capture techniques use a series of interviews to
acquire requirements. In interviews users play a relatively passive role. Usually
system analysts document the results in specifications described in plain natural
language using varying graphical models. These specifications are presented to
the users for confirmation but are typically incomplete and inconsistent and do
not reflect the real needs of all project stakeholders.

To overcome these problems, viewpoint development has been proposed to
improve requirement definitions. Viewpoint development is defined as a process
of identifying, understanding and representing different stakeholder viewpoints

(Darke and Shanks 1995). In our viewpoint development approach, several view-
point agents are identified who play the role of actors for each use case (Jacobson
1992). These agents describe their viewpoints of use cases and scenarios in plain
natural language.

To reduce ambiguity and vagueness in use cases written in plain natural lan-
guage, we propose the use of a controlled natural language that has a well-defined
grammar and that comes with a set of simple writing guidelines. The controlled
natural language is computer-processable and can be unambiguously translated
into flat logical forms. Due to the formal properties of the controlled language
the use cases can be checked whether they are consistent with the writing guide-
lines during the intra-viewpoint analysis phase and during the inter-viewpoint
analysis phase the use cases can be compared to identify misunderstandings,
inconsistencies and conflicts.

Apart from these formal properties, flat logical forms can be translated au-
tomatically into crosstables. Once in crosstable format we use Formal Concept
Analysis (FCA) (Wille 1982, 1992) to develop a concept lattice. FCA is a mathe-
matical approach to data analysis based on the lattice theory of Birkhoff (1967).
In our approach, the use cases of multiple stakeholders are combined to allow fur-
ther discussions, identification of similar terminology, integration of viewpoints
into one viewpoint, elaboration and refinement of functional requirements.

In Section 2 of this paper we will introduce our controlled language and
show how a use case written in plain natural language can be translated into
the controlled language version by following a set of simple writing guidelines.
In Section 3 we will discuss how the resulting use case can be unambiguously
translated into flat logical forms. In Section 4 we show how crosstables can be
generated automatically out of these flat logical forms. Crosstables build the
starting point to produce concept lattices.

2 Example Use Case

Use cases are usually written in plain natural language. But as we will see even
simple sentences with no apparent ambiguities for humans are interpreted as
ambiguous by computers that cannot access the relevant knowledge sources.
To solve this problem, one could either let the stakeholders disambiguate the
sentences or teach them a subset of English that is unambiguously translatable
into a formal representation. The first approach is complex and arduous since
longer sentences may have hundreds of analyses and interpretations through
which the stakeholder would have to go. The second approach also takes some
effort since the stakeholders have to learn a set of guidelines about how to specify
circumstances in a use case with words. However, we can ease this task by
keeping the set of guidelines minimal and by providing a sophisticated interface
for writing use cases.

The use case (Gomaa 2000) below is written in plain natural language and
contains a number of linguistic problems that need to be solved at some stage if
the use case is to be processed by a computer. For each problem we are detecting,

we will formulate a writing guideline that will circumvent the problem in an
unambiguous way.

Use Case Name: Withdraw Funds (in plain natural language)

Summary: Customer withdraws a specific amount of funds from a valid
bank account.
Actor: ATM Customer
Precondition: ATM is idle, displaying a Welcome message.
Description:
Customer inserts the ATM Card into the Card Reader.
If the system recognizes the card, it reads the card number.
System prompts customer for PIN number.
Customer enters PIN.
System checks the expiration date and whether the card is lost or stolen.
If card is valid, the system then checks whether the user-entered PIN
matches the card PIN maintained by the system.
7. If PIN numbers match, the system checks what accounts are accessible
with the ATM Card.
8. System displays customer accounts and prompts customer for transaction
type: Withdrawal, Query, or Transfer.
9. Customer selects Withdrawal, enters the amount, and selects the account
number.
10. System checks whether customer has enough funds in the account and
whether daily limit has been exceeded.
11. If all checks are successful, system authorizes dispensing of cash.
12. System dispenses the cash amount.
13. System prints a receipt showing transaction number, transaction type,
amount withdrawn, and account balance.
14. System ejects card.
15. System displays Welcome message.

SO W=

In sentence (1) the noun customer is used without an article and denotes
the same concept as ATM Customer. Another potential problem for an automatic
processor is the structural ambiguity of the prepositional phrase into the Card
Reader that modifies here the underlying verbal event and not the object ATM
Card. The minimal rule set to resolve these problems are:

P1 Use a noun together with a determiner (customer — the customer).

P2 Use words in a consistent way (the customer — the ATM customer).

P3 Use a prepositional phrase to modify a verb (inserts the ATM Card into the
Card Reader).

P4 Use a relative clause to modify a noun (e.g.: inserts the ATM Card that has
a PIN number).

In sentence (2) the personal pronoun it refers back to system and not to
card. Personal pronouns are notoriously difficult to resolve since the search space
for the correct noun might be very deep and not enough linguistic information
might be available to find the correct antecedent. Therefore, we do not allow
personal pronouns in the controlled language:

P5 Use the appropriate noun instead of a personal pronoun (it — the system).

Sentence (5) expresses that the system checks three conditions but uses
only one explicit operator (whether). In the controlled language we make the
logical dependence between the clauses explicit by logical operators and parallel
syntactic structures (... if A and if B and if C).

P6 Use logical operators to make the dependence between clauses and phrasal
structures explicit and eliminate all the embeddings (The system checks if
the date is expired and if the card is lost and if the card is stolen).!

Sentence (6) uses a passive construction and a compound noun (card PIN).
In passive constructions the actor is often omitted, therefore we do not allow pas-
sive constructions in the controlled language. Another problem is that the com-
pound noun card PIN is a combination of two terms that have been introduced
before (PIN number and ATM card).

P7 Use active sentences instead of passive sentences (PIN maintained by the
system — The system maintains the PIN number).?
P2 applies again (card PIN — PIN number of the ATM card).

Sentence (7) uses a plural form. The set of objects described by this plural
form (what accounts) is underspecified and can be made more explicit by using
a determiner (universal quantifier and a singular form).

P8 Use singular instead of plural forms (the system checks what accounts are
accessible with the ATM Card — the system checks every account that is
accessible with the ATM card).

Sentence (8) enumerates three transaction types: Withdrawal, Query, or
Transfer.

P6 applies again (Withdrawal or Query or Transfer).

Sentences (9-12) are very problematic since the logical dependences between
the clauses are not made explicit. Apart from the missing operators two vague
expressions (enough and has been exceeded) are used that are not precise enough
for a specification.

P6 applies again (If ... then ... if ... then).

! Note that the original sentence (5) is not accurate in the sense that it does not tell
what to do with the results of the tests. Sentence (6) says if the card is valid .. ., but
sentence (5) does not explicitly say how to determine whether the card is valid. This
shows that the original specification is not complete, and there are no rules that can
detect this automatically.

% There are expressions that denote states, such as lost and stolen in sentence (5) —
the verbs are used as predicative adjectives. In these cases P7 does not apply.

P9 Use a comparative clause to compare specific values (bigger than the amount
X, smaller than the amount Y).

In sentence (13) a noun is modified by a present participle and three noun
phrases are enumerated.

P4 applies again (a receipt that shows the transaction number ...).

P10 Use commas followed by a comma plus an and operator to enumerate
more than two noun phrases (the transaction number, the transaction type,
the withdrawn amount, and the account balance).

If we apply these writing guidelines to the original use case we can rewrite
it as shown below. It is important that the viewpoint agent needs only to know
these guidelines and no grammar rules as in (Fuchs et al. 1999). The RECOCASE
system will automatically flag all inadmissible grammatical structures.

Use Case Name: Withdraw Funds (in controlled natural language)

Summary: The ATM customer withdraws a specific amount of funds from
a valid bank account.

Actor: ATM customer
Precondition: If the ATM is idle then the system displays a Welcome message.
Description:

1. The ATM customer inserts the ATM card into the card reader.

2. If the system recognizes the ATM card then the system reads the card
number.

3. The system prompts the ATM customer for the PIN number.

The ATM customer enters the PIN number.

5. The system checks if the date is expired and if the ATM card is lost and
if the ATM card is stolen.

6. If the ATM card is valid then the system checks if the PIN number matches
the PIN number of the ATM card.

7. If the PIN number matches the PIN number of the ATM card then the
system checks every account that is accessible with the ATM card.

8. The system displays every customer account and prompts the ATM cus-
tomer for the transaction type: Withdrawal or Query or Transfer.

9. If the ATM customer selects the transaction type Withdrawal and enters
the amount and selects the account number then the system checks if the
funds of the ATM customer is bigger than the amount X and if the daily
limit of the ATM customer is smaller than the amount Y and then the
system dispenses the cash amount.

10. The system prints a receipt that shows the transaction number, the trans-
action type, the withdrawn amount, and the account balance.

11. The system ejects the card.

12. The system displays a Welcome message.

=~

The RECOCASE system takes this use case as input and produces for each
sentence a flat logical form.

3 From Use Cases to Flat Logical Forms

The RECOCASE system is a Prolog implementation that uses Link Grammar
parser (LG) (Sleator & Temperlay 1993) to parse the use case and an extension of
ExtrAns’ logical form generator (Moll4 et al. 2000) is used to produce flat logical
forms. LG consists of a fast parser and a grammar of English written in the spirit
of dependency grammar showing the words that are linked and the types of links.
Since the original LG parser outputs all the alternative dependency structures
for a sentence, we use a filter that only accepts dependency structures that are
defined in our controlled language. If RECOCASE discovers a sentence that is
not in the subset of the controlled language it displays a message and informs the
user about its coverage. From the dependency structures RECOCASE derives
a flat logical form as a semantic representation for each sentence. Flat logical
form consists of a conjunction of predicates where all variables are existentially
closed. To make this notation expressive enough, the logical form generator uses
reification for objects, events, properties, and operators.
For example, the sentence

The ATM customer inserts the ATM card into the card reader.
results in the following flat logical form:

holds(ed)

object (customer,ol, [x3])
compound noun (x2,x3)
object (’ATM’,02, [x2])
evt (insert,e4, [x3,x7])
object(card,o3, [x7])
compound noun (x6,x7)
object (’ATM’ ,02, [x6])
prop(into,p8, [e4,x11])
object(reader,o5, [x11])
compound noun (x10,x11)
object(card,o6, [x10])

The compound noun ATM customer introduces three predicates:

object(customer,ol, [x3])
compound noun (x2,x3)
object (’ATM’,02, [x2])

The meaning of the first predicate object (customer,ol, [x3]) is “o1 is the
concept that the object x3 is a customer” and the meaning of the third predicate
object (?’ATM’ ,02,[x2]) is “02 is the concept that the object x2 is an ATM”.
The second predicate compound noun(x2,x3) says that the objects x2 and x3
stand in a compound noun relation that is not further specified.

The verb inserts introduces the predicate

evt (insert,e4, [x3,x7])

with the meaning “e4 is the event that x3 inserts x7”. x3 and x7 represent
the objects introduced by the arguments of the verb. The reification of the event
e4 provides a handle that can be used to modify this event.

The prepositional phrase into the card reader introduces four predicates: the
predicate

prop(into,p8, [e4,x11])

deduced from the complete prepositional phrase and three predicates deduced
from the compound noun card reader. Prepositions introduce properties: the
meaning of the above predicate is “p8 is the property that x11 modifies e4”.

Reification can also be used to encode the existence of concepts and logical
operators. To express that an event actually exists the predicate holds(e4)
is used. All logical operators that occur in the controlled language are rei-
fied and represented in the following way: if (opl,el,e2), and(op2, [e1,e2]),
or(op3, [e1,e2]),not(op4,el). Nested logical expressions can be flattened-out
by using the reification of the logical operators as handles. Thus, the expression
“and (x,o0r(y,z))” is converted into and (op1, [x,0p2]), or(op2, [y,z]).

By using flat logical forms we can avoid embedded structures, this has the
nice effect that the logical forms of two use cases are easy to compare and to
work with.

4 From Flat Logical Forms to Concept Lattices via
Crosstables

Graphical models have been recognized as useful communication mediums be-
tween project stakeholders. We have chosen to use FCA to present the viewpoints
of different stakeholders as a concept lattice. We were attracted to FCA for the
problem of reconciling differences in viewpoints since a concept in FCA is based
on the philosophical understanding of a concept as a set of objects and the set of
attributes shared by that object, known as the intent and extent of the concept,
respectively. This means that similar concepts and differences in terminology
should be identifiable either through their extensional or intensional definition.
As a graph, the lattice also allows us to compute the closeness between view-
points and to test when we are moving towards a shared viewpoint. To generate
a concept lattice using FCA we begin with a crosstable that can automatically
be generated from the flat logical forms.

4.1 Example

A crosstable is made up of rows of objects (sentences) and columns of attributes
(terms) used by those objects (see Table 2 below). As an example we translate
the logical forms for the sentence

The ATM customer inserts the ATM card into the card reader.

into a row in the crosstable. The predicate holds(e4) of the logical form
of this sentence refers to the event (insert) as the main event. We create an
attribute (insert) for this main event. The components, which are directly con-
nected with the main event, are the objects (customer) and (card) and the
preposition (into). In a recursive way we are looking for other connected com-
ponents. (customer) and (card) are only connected with (ATM) as compound
nouns. Since (customer) and (card) are directly connected with the main event,
we connect each of them with the components with which they are connected
recursively and create thus the attributes of the crosstable (ATM customer) and
(ATM card). The preposition (into) is connected with (reader) which is con-
nected to (card) to build a compound noun. This way we get the prepositional
phrase (into card reader) as the fourth attribute. Thus the final attributes
of the object ‘sentence 1’ are:

sl: (ATM customer), (insert), (ATM card), (into card reader)

Using the algorithm in (B6ttger forthcoming) we get the following attributes
for sentences (2-5). Each of these sentences defines an object and thus a row in
the crosstable.

s2: (system), (read), (card number), (if system recognizes ATM card),
then)

$3: (system), (prompt), (ATM customer), (for PIN number)
s4: ,
s5: (system), (check), (if expired date), (if anonym_object lose ATM card),

(
(
()
(ATM customer), (enter), (PIN number)
(
(if anonym_object steal ATM card)

Using sentences (1-5) we get the following columns (Tablel) for the crosstable:®

Table 1. Columns for crosstable in Table 2

1 ATM customer |7 card number 13 PIN number

2 insert 8 if system recognizes ATM card|14 check

3 ATM card 9 then 15 if expired date

4 into card reader|10 prompt 16 if anonym _object lose ATM card
5 system 11 for PIN number 17 if anonym_object steal ATM card
6 read 12 enter

3 RECOCASE does not have enough lexical and world knowledge to tell that lost and
stolen denote states, and therefore it produces the active form of the expressions.

Table 2. Crosstable for sentences (1-5)

1/12(3|4|5|6|7(8/9(10|11|12|13 |14 |15 |16 |17

sl |[x|x|x|xX

s2 X|[x|x|x|x
s3 | x X X X

s4 | x X X

sb X X X X X

By finding intersections of shared attributes we are able to develop higher-
level concepts. By ordering the concepts we are able to create an abstraction
hierarchy in the form of a complete lattice (see Figure 1). For further discussion
regarding FCA and the generation of concepts and concept lattices please refer

to Wille (1992).

o 4
R 2

5 4
[prompt]
[for PIN number)
3-s-Zuoi

[check]
[if expired date]

[if anonym_object lose ATM card]
[if anonym_object steal ATM card]
5-3-Zuoi

i 3
[enter]

[PIN number]
4-s-Zuoi

[insert]
[ATH card]

[into card reader]
1-s-Zuoi

Fig. 1. Concept lattice of sentences (1-5)

5 Further Work

We are currently investigating how to represent the relations between the at-
tributes. A possibility is to tag the attributes in the objects and add expressions
about the nature of the relations. By adding such additional information the
attributes can be simplified and thus it is more likely to find shared attributes.
For example (for PIN number) would be converted into (PIN number) and a
new concept (say, Concept 9) would be generated. Figure 2 shows the necessary
changes in the affected concepts to represent who prompts whom for what and
who enters what (the relations between the concepts are not shown).

3
2 e-31: (enter) 5
0-21: (ATM customer)| |4-s-%uoi e51: (prompt)
4-s-%uoi: e31(0-21, 0.91)| |3-s-%uoi
9 | 3-s-%uoi: e_51(0_41, 0_21)
091: (PIN number)| 4 3-s-%uoi: for(e_51,0.91)

0.41: (system)

Fig. 2. Possible changes in some nodes of the concept lattice in Figure 1

6 Conclusion

The RECOCASE system is a Prolog implementation that translates use cases
written in controlled language into flat logical forms. If the RECOCASE system
discovers a sentence that is not in the subset of the controlled language it informs
the user about its coverage. It is then the task of the user to rewrite the sentence
according to the guidelines of the controlled language. The flat logical forms of
the use cases can automatically be translated into crosstables. Once in crosstable
format we use Formal Concept Analysis to develop a concept lattice to recon-
cile differences in viewpoints. Lattices allow to compute the closeness between
viewpoints and to test when we are moving towards a shared viewpoint.

References

Birkhoff, G.: Lattice Theory. American Mathematical Society. Providence, Rhode Is-
land. 1967.

Bottger, K: Modelling and Reconciling Functional Requirements from Different View-
points Using Use Case / Scenarios and Formal Concept Analysis. University of
Mannheim, Germany. 2001.

Darke, P., Shanks, G.: Managing user viewpoints in requirement definition. 8" Aus-
tralasian Conference on Information Systems. 1995.

Fuchs, N. E., Schwertel, U., Schwitter, R: Attempto Controlled English — Not Just
Another Logic Specification Language. Lecture Notes in Computer Science 1559.
Springer Verlag. 1999.

Gomaa, H.:Withdraw funds (example use case), in Matthews, M.G. Object-Oriented
Analysis and Modeling. http://mason.gmu.edu/ mmatthel/ObjectOriented Analy-
sis.pdf. 2001.

Jacobson, I.: Object-Oriented Software Engineering. Addison-Wesley. 1992.

Moll4, D., Schwitter, R., Hess, M., Fournier, R.: ExtrAns, an answer extraction system.
T.A.L 41:2 (2000) 495-519.

Sleator, D. D., Temperley, D.: Parsing English with a link grammar. Proceedings of
the Third International Workshop on Parsing Technologies, pp. 277-292. 1993.
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts.

In Reidel, D. Ordered Sets, Dordrecht, pp. 445-470. 1982.

Wille, R.: Concept lattices and conceptual knowledge. Computers and Mathematics

with Applications 23 (1992) 493-522.

