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Abstract

This paper argues that a formal ontology (in our case
a description logic knowledge base) should be created
in a linguistically motivated way so that it can be
queried easily by non-specialists. This can best be
achieved by using a strict naming convention that is
based on those linguistic expressions that occur in
the application domain for which the ontology will
be created. We will see that ABox and TBox state-
ments that closely follow this naming convention can
be written directly in a controlled natural language
and that the same controlled natural language can be
used to query the description logic knowledge base.
Both ABox and TBox statements written in con-
trolled natural language are translated automatically
into the Knowledge Representation System Specifica-
tion (KRSS) syntax and questions are translated into
RacerPro’s new query language nRQL and answered
over the description logic knowledge base. Using a
controlled natural language as a high-level interface
language abstracts away from any formal notation
and allows for true collaboration between humans and
machines.

Keywords: ontology design, controlled natural lan-
guages, question answering, human-computer inter-
faces

1 Introduction

Formal languages are difficult to understand and use
by non-specialists – ontologies are no exception in this
respect. However, ontologies have a rather special
status since their role is to specify a vocabulary with
which assertions and queries are exchanged not only
between machines but also between humans and ma-
chines. In the ideal case, ontologies should be human-
readable as well as machine-processable since they are
agreements among all participants to use a common
vocabulary in a specific domain (Gruber 1993).

Recently, the use of machine-oriented controlled
natural languages has been suggested to cre-
ate ontologies in a human-readable and machine-
processable way (Schwitter & Tilbrook 2004). These
controlled natural languages look like natural lan-
guage but they are in fact formal languages “in dis-
guise”. They have a formal syntax and semantics and
can be unambiguously translated into an existing for-
mal language, for example into a version of descrip-
tion logics or into first-order logic.

Copyright c©2008, Australian Computer Society, Inc. This is
a slightly modified version of a paper that appeared at the
Knowledge Representation Workshop (KROW 2008), Sydney,
Australia. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 90. Thomas Meyer and Mehmet A.
Orgun, Eds. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

There exists an entire stream of research that in-
vestigated the usefulness of controlled natural lan-
guages for authoring and verbalising description logic-
based ontologies. For example, (Schwitter & Tilbrook
2004, 2006) discuss the bidirectional mapping be-
tween the controlled natural language PENG and var-
ious subsets of the web ontology language OWL. This
work built the foundation for Sydney OWL Syntax
– a proposal of a controlled natural language syn-
tax for OWL 1.1 (Cregan et al. 2007). In (Bernardi
et al. 2007) a categorial grammar is introduced that
translates the controlled natural language Lite Nat-
ural Language into the description logic DL-Lite, a
tractable fragment of OWL 1.1. This fragment is
expressive enough to deal with UML diagrams and
relational databases. In (Hart et al. 2007) the con-
trolled natural language Rabbit is presented which fo-
cuses on the knowledge acquisition process and re-
quires that a domain expert and a knowledge engi-
neer work in cooperation to create an OWL ontology.
In (Kaljurand 2007) a bidirectional interface to OWL
is discussed where a subset of the controlled natural
language Attempto Controlled English is used for the
purpose of authoring and verbalising OWL ontologies.
The three controlled natural languages Sydney OWL
Syntax, Rabbit, and Attempto Controlled English are
compared in (Schwitter et al. 2008) and a number of
requirements to an OWL compatible controlled nat-
ural language are put forward.

There exists another stream of research that stud-
ied the usefulness of controlled natural language and
unrestricted natural language as ontology query lan-
guages. For example, in (Bernstein et al. 2004) a con-
trolled language-based query interface is introduced
that guides the writing process of questions using pre-
dictive interface techniques, and in (Bernstein et al.
2005) the authors show that this type of interface
performs better than formal query languages. There
exist also a number of systems that support the use
of unrestricted natural language for answering ques-
tions over ontologies (Lopez et al. 2006, Kaufmann
et al. 2006, Mithun et al. 2007). However, these
unrestricted approaches suffer from similar problems
to database systems with natural language interfaces
(Copestake & Sparck-Jones 1990, Androutsopoulos
et al. 1995, Popescu et al. 2004) because the end-users
both over- and undershoot the system’s capabilities
since they don’t know where the system’s boundaries
are and what kind of queries are supported. It is an
ongoing debate which approach is most convenient
for end-users (Reichert et al. 2005, Kaufmann et al.
2007), and it is not surprising that the performance
of a natural language query interface to a description
logic knowledge base depends highly on the quality
and choice of the vocabulary in the knowledge base
(Kaufmann et al. 2007).

In this paper, we will bring these two research
streams closer together and argue that a description



logic knowledge base should be created in a linguis-
tically motivated way in order to support question
answering in an optimal way. We will show that a con-
trolled natural language can be used for making ter-
minological and assertional statements and that the
structure of these statements is related in a system-
atic way to the controlled natural language used for
expressing questions.

The rest of this paper is structured as follows: In
Section 2, we will give a brief introduction to descrip-
tion logics and introduce the main constructors that
are usually used to build a description logic knowl-
edge base. In Section 3, we will study the relation-
ship between the terms used in existing description
logic ontologies and natural language expressions and
make some recommendations about how to use lin-
guistic expressions in an optimal way in ontologies.
In Section 4, we will show that a description logic
knowledge base can be specified in controlled natural
language and introduce a notation that uses reifica-
tion of relations in order to deal with n-ary relations
in description logics. In Section 5, we look at the kind
of questions that are supported by a state of the art
description logic reasoner and suggest controlled nat-
ural language renderings for these questions. In Sec-
tion 6, we will discuss the architecture of a controlled
natural language processor that relates the structures
of statements and questions written in controlled nat-
ural language in a systematic way to each other and
translates these sentences into the input format of
a description logic reasoner; we will also show that
the same language processor can be used to generate
answers to questions in controlled natural language.
Finally, in Section 7, we will summarise the benefits
of our approach and point to a number of further re-
search challenges.

2 Description Logics (DLs)

DLs are a family of knowledge representation lan-
guages that can be understood as decidable fragments
of first-order logic (Baader et al. 2003). DLs – such
as the web ontology language OWL DL (Horrocks et
al. 2003) – play an important role in the Semantic
Web architecture because they are decidable and al-
low for a clear separation between the terminological
information and the data.

A DL knowledge base usually consists of two com-
ponents: a terminological component (= TBox) and
an assertional component (= ABox). The TBox as-
serts general facts about concepts (= unary predi-
cates) and roles (= binary relations) through decla-
rations while the ABox asserts specific facts about
individuals in an application domain. For example, a
TBox might contain concept definitions like (1) and
general inclusion axioms like (2):

1. (equivalent academic_staff (or
professor senior_lecturer lecturer))

2. (implies student (or graduate_student
undergraduate_student))

and the ABox might contain concept assertions like
(3) and role assertions like (4):

3. (instance david_miller
undergraduate_student)

4. (related david_miller comp101 attend)

Note that we use the Knowledge Representation
System Specification (KRSS) syntax (Patel-Schneider
& Swartout 1993) here in order to express these and
all subsequent axioms in a compact way.

The expressivity of a DL depends on the set of con-
structors that can be used for defining concept terms
from concept names and role names. Some com-
mon constructors include logical constructors: inter-
section, union, and complement; and quantified role
restriction like (5), and number restriction like (6):

5. (instance kylie_jones (some attend
unit))

6. (instance comp101 (exactly 22 student))

Other constructors are used to characterise roles
and for enhanced reasoning with roles, for example:
inverse, transitivity, and functionality. For instance,
(7) defines a role with a domain and a range restric-
tion and provides a name for the inverse of the defined
role:

7. (define-primitive-role teach
:inverse is_taught_by
:domain academic_staff
:range unit)

In addition to these features, some DLs provide
extensions for algebraic reasoning over concrete do-
mains, for example:

8. (instance david_miller (= age 21))

Here the age of an individual is specified with the
help of a concrete domain predicate (=) and a concrete
domain attribute (age) that is of type cardinal.

3 Linguistic Structures in Ontologies

A DL ontology is essentially a logical theory that
specifies a conceptualisation of a specific part of the
world – in our case of an university. Since the aim
of an ontology is to make domain assumptions ex-
plicit and to establish a common understanding of
the structure of information in a particular domain,
it is important that all participants are able to use
the same vocabulary in order to make assertions and
ask queries in a way that is consistent with the logical
theory. It should be possible for a non-specialist to
relate the terms used in the ontology to the entities in
the application domain. That means the terminology
should be easy to use and understand by humans so
that humans and machines can cooperate in the best
possible way.

It seems intuitive to choose a naming convention
for creating an ontology that is close to the linguistic
expressions that occur in a particular domain. How-
ever, this is not always the case and a wide diversity
and fragmentation of naming schemes can be found in
real-world ontologies (Schober 2007). This is because
knowledge engineers can use in principle any char-
acter sequence for naming entities and often make
cost/accuracy trade-offs when creating an ontology.
For a machine it does not make any difference whether
a concept or a role is labeled in a way that can be
understood by a human or not. Here is an extreme
example:

9. (implies C1 (and C2 (some R (or C3
C4))))
(or C3 C4)
(implies C5 (and C1 (some R C3)))
(implies C6 (and C1 (some R C4)))

The labels that occur in this excerpt make it diffi-
cult for a human reader to understand what the sin-
gle concept and role names stand for, how they relate
to each other, and how they refer to the entities in



the application domain for which the ontology is de-
signed. It is much easier to understand what is go-
ing on if the terms in the ontology communicate the
intended meaning using natural language-like expres-
sions, for example:

10. (implies person (and human (some
has_gender (or female male))))
(disjoint female male)
(implies woman (and person (some
has_gender female)))
(implies man (and person (some
has_gender male)))

Existing ontologies sometimes combine natural
language expressions with non-linguistic artifacts.
But there is a clear tendency to use linguistic pat-
terns in ontologies. (Mellish & Sun 2005) collected
882 ontology files encoded in OWL and analysed the
linguistic structure of concept and role names. They
found that 72% of concept names ended with an En-
glish noun, 30% of concept names consisted entirely of
noun sequences (various forms of compound nouns),
and 14% contained no recognised word. The structure
of role names showed a broader variety of patterns but
65% of these patterns started with a verb.

Given these results, we suggest using those pat-
terns that occur most frequently in existing ontolo-
gies in order to establish a linguistically motivated
naming convention. In particular, we suggest using

• nouns and compound nouns as concept names
(e.g. student and undergraduate student);

• transitive verbs and auxiliary verb-noun con-
structions as role names (e.g. take, consist of,
is student of, has student);

• normalised forms of proper nouns as identifiers
for individuals (e.g. david miller, comp101).

Following (Schober 2007), we additionally recom-
mend to use an underscore ( ) to delimit words in
compound terms since this separator is closer to nat-
ural language than CamelCase; to replace homonyms
by an alternative word form since they create confu-
sion; to resolve abbreviations and acronyms in names
and include them as synonyms in the ontology.

4 Controlled Natural Languages (CNL)

In the last section, we have argued that using a lin-
guistically motivated naming convention can improve
the readability and usability of an ontology for non-
specialists. But also knowledge engineers who have
to maintain and extend an ontology for new busi-
ness needs can benefit from naming conventions since
well-chosen naming conventions can enhance clarity,
avoid the introduction of faults, and make it easier
for subsequent generations of analysts to understand
what the ontology is designed for. A linguistically
motivated naming convention can directly be applied
when creating an ontology with an ontology editor
although current ontology authoring tools do not ac-
tively enforce naming conventions.

Adopting a common naming convention is a good
strategy to improve the quality of an ontology but
we can even go a step further towards natural lan-
guage and express ABox and TBox statements of an
ontology completely in a controlled natural language
(CNL) and then translate these statements directly
into the input language of a DL reasoner. That this
can be done has been shown in previous work (Schwit-
ter et al. 2008). Therefore, we will give here only
a brief overview in order to discuss the underlying

design principles and illustrate how such CNL state-
ments look like before we focus on the structure of
CNL questions and the relationship between CNL as-
sertions and questions.

4.1 Terminological Statements in CNL

TBox statements express the intensional knowledge
about a domain in form of a terminology. This ter-
minological information is static, and it is more likely
that a knowledge engineer will write and modify such
statements than a domain specialist. Nevertheless,
domain specialists need to be able to read, under-
stand and validate this information with respect to an
application domain. A CNL can help in this respect
since it provides a high-level interface to a formal lan-
guage that is potentially difficult to understand by an
end-user. For example, a concept definition like (1) –
see Section 2 – can be expressed as (11) in CNL, and
a general inclusion axiom like (2) as (12):

11. Every academic staff is defined as
a professor or a senior lecturer or
a lecturer.

12. Every student is a graduate student
or is an undergraduate student.

The TBox statement (11) makes it explicit that
this statement is a definition that consists of a set
of necessary and sufficient conditions. In contrast to
(11), the TBox statement (12) does not speak about
a definition since it only states necessary conditions
for a primitive concept.

The definition of primitive roles in CNL requires
the use of meta-information in order to speak about
the features of a role. The use of variables makes it
possible to speak about various features of a role in a
very compact way in CNL. Note that variables are not
a specific characteristic of a formal language; variables
are also used in natural language texts as a look into
any undergraduate maths textbook proves. Here is
the CNL rendering of the primitive role definition (7)
that uses two variables to signal the domain and range
restrictions of the role:

13. X teaches Y is defined as Y is taught
by X and X is an academic staff and Y
is a unit.

Note that there is no need to use additional con-
structors such as inverse, domain, and range as in (7)
since the CNL language processor can figure out the
type of these restrictions from the linguistic structure.

4.2 Assertional Statements in CNL

In contrast to TBox statements, ABox statements are
much more dynamic in nature and more likely to be
used by non-specialists. ABox statements rely on the
vocabulary defined in the TBox. In the simplest case,
ABox statements can be expressed via an auxiliary
or a transitive verb in CNL, for example, the concept
assertion (3) can be expressed as (14) and the role
assertion (4) as (15):

14. David Miller is an undergraduate
student.

15. David Miller attends COMP101.

The following two examples (16) and (17) illus-
trate how the quantified restriction in (5) and the
number restriction in (6) can be expressed in CNL:

16. Kylie Jones attends some unit.



17. COMP101 has exactly 22 students.

The subsequent rendering (18) shows how the con-
crete domain example introduced in (8) can be ex-
pressed in CNL:
18. David Miller’s age is 21.

In summary: all these ABox statements are based
on the following simple functional structure:
19. Subject Verb Object

As we will see later, coordination is allowed in ob-
ject position but not in subject position since this
would introduce ambiguity. However, nouns that oc-
cur in the subject position can be modified as the
example in (18) illustrates.

4.3 From Binary to N-ary Relations

Most DL languages only support binary relations and
at first glance it looks like only very simple CNL
statements can be captured by this logical framework.
However, it is often necessary (and more natural) to
describe relations among more than two individuals
in one statement. This can be achieved via reifica-
tion of binary relations (Noy & Rector 2006). For
example, the ABox statement:
20. David Miller takes COMP101 on Monday

at 11am in the Lincoln Building.

can be represented in DL via a concept assertion con-
sisting of a new individual that stands for a reified
relation (= verbal event) and a set of role assertions
that link the individual of the reified relation with its
participants:
21. (instance e1 take)

(related e1 david_miller has_agent)
(related e1 comp101 has_theme)
(related e1 monday has_day)
(related e1 1100 has_hour)
(related e1 lincoln_building
has_location)

Here the new individual e1 stands for the reified
relation and is an instance of the take concept. The
roles (has agent, has theme, has day, has hour, and
has location) link this new individual to their cor-
responding individuals and values. Of course, this
approach requires that the take concept is available
in the TBox, for example as a defined concept:
22. (equivalent take (or attend select))

and that all the relevant roles are also defined. For
example, the declaration of the has theme role looks
as follows in our context:
23. (define-primitive-role has_theme

:domain take :range unit)

Note that the concept term take occurs in this def-
inition as a domain restriction and the concept term
unit as a range restriction.

5 DL Reasoners

There exist a number of state of the art DL rea-
soners for querying a DL knowledge base, for ex-
ample: FaCT++ (Tsarkov & Horrocks 2006), Pellet
(Sirin et al. 2007), and RacerPro (Haarslev & Möller
2003, Wessel & Möller 2006). These reasoners usu-
ally implement a tableau-based decision procedure
for general TBox reasoning (subsumption, satisfiabil-
ity, and classification) and offer support for ABox
reasoning (retrieval and conjunctive queries). Pel-
let and RacerPro both support a subset of SPARQL
(Prud’hommeaux & Seaborne 2008) for answering
conjunctive ABox queries.

5.1 RacerPro and nRQL

RacerPro is a knowledge representation system
that implements the expressive description logic
ALCQHIRR + (D−). This is the basic description
logic ALC augmented with qualifying number restric-
tions, role hierarchies, inverse roles, and transitive
roles. In addition to these basic features, Racer-
Pro also provides facilities for algebraic reasoning in-
cluding concrete domains and implements most of
the functions specified in the KRSS specification (see
(Racer Systems 2007) for details).

The new RacerPro query language (nRQL) is a
query language for RacerPro’s concept language and
supports – among other things – strong negation,
negation as failure, and numeric constraints. Racer-
Pro translates SPARQL queries into nRQL queries.
nRQL is a more expressive query language than
SPARQL. In contrast to SPARQL, nRQL uses de-
scription logic reasoning and does not work on the
syntactic level of triples but on the level of semantic
models (Racer Systems 2007).

In the following, we will first show how the syntac-
tic structure of nRQL queries looks like and discuss
then the main types of queries that are supported
by RacerPro and provide CNL renderings for these
queries.

5.2 Queries in nRQL

An nRQL query consists of a query head and a query
body. The query head specifies the format of the
answer and the query body contains (unary or bi-
nary) query atoms that are used to specify retrieval
conditions on the bindings of query variables. nRQL
queries are either simple or complex. A simple nRQL
query consists of a single query atom in the query
body. A complex nRQL query consists of two or more
query atoms that are combined with the help of query
body constructors (e.g. and, union, neg). For exam-
ple, the simple nRQL query:

24. (retrieve (?1) (?1 comp101 take))

has a query variable (?1) as head and a binary query
atom (?1 comp101 take) as body. This nRQL query
can be expressed as a wh-question in CNL:

25. Who takes COMP101?

Note that the nRQL query in (24) can not be an-
swered over a DL knowledge base that contains reified
relations as introduced in (21). In order to answer the
CNL question (25) over a DL knowledge base that
contains reified relations, the verbal relation of the
question needs to be reified too and this results in a
complex (conjunctive) nRQL query of the form:

26. (retrieve (?2) (and (?1 ?2 has_agent)
(?1 take) (?1 comp101 has_theme)))

The body of this complex query is composed of
a query body constructor (and) that takes an unary
query atom ((?1 take)) and two binary query atoms
((?1 ?2 has agent) and (?1 comp101 has theme))
as arguments.

5.3 nRQL Queries in CNL

The query language nRQL distinguishes a number of
different types of queries that can be answered over a
DL knowledge base. In the following, we will discuss
CNL renderings for the most important types of these
queries.



5.3.1 Queries about Concepts

In nRQL, queries about concepts can be used to re-
trieve all instances of a concept from an ABox. This
type of queries can be expressed in CNL via a wh-
question (27) or as an imperative construction (28):

27. Who is a student?

28. Find all students.

The nRQL query processing engine returns a set
of tuples of the form (((?1 david miller)) ((?1
eva barth))) as answer to these questions. Note
that the CNL question (28) makes the expected an-
swer set explicit using the universal quantifier all
in contrast to (27). A partial answer such as ((?1
eva barth)) would be an acceptable answer for ques-
tion (27) but not for question (28).

5.3.2 Queries about Roles

In nRQL, queries about roles can be used to retrieve
role fillers from an ABox. Since these queries extract
information from binary relations, there are in prin-
ciple three different queries one might want to ask
about the arguments of a binary relation. This cor-
responds to the following three CNL questions:

29. Who takes what?

30. Who takes COMP101?

31. What does David Miller take?

In (29) we are asking for information about the
subject as well as the object of a relation, in (30) we
are only asking for information about the subject, and
in (31) only for information about the object. Note
that the structure of (31) is different from (29) and
(30). The query word what has been moved from the
object position to the front of the sentence and is used
there together with a do-operator.

5.3.3 Boolean Queries

In nRQL, simple Boolean queries can be used to check
whether or nor at least one individual exists for a
specific concept, whether or not a specific individual
exists for a particular concept, and whether or not
two specific individuals stand in a particular relation.
Boolean queries return either true or false.

In CNL, we can express Boolean queries via a
yes/no-question. The following two questions (32)
and (33) are equivalent and ask whether or not at
least one individual exists that is a student:

32. Is there a student?

33. Does a student exist?

However, these two CNL questions are constructed
in a different way: question (32) uses the verb be
and an existential there, and question (33) uses a do-
operator and the intransitive verb exist.

The following CNL question checks whether or not
a specific individual belongs to a specific concepts:

34. Is David Miller a student?

and finally the subsequent CNL question (35) checks
whether or not two specific individuals stand in a par-
ticular relation:

35. Does Lisa Brown teach Kylie Jones?

As we will see later, the answer to these questions
is yes or no but one can also include the focus of the
question in the answer, for example: Yes, Lisa Brown
does.

5.3.4 Classical Negated Concepts and Roles

The nRQL query language allows for classical negated
concepts and roles. For example, RacerPro can prove
that somebody is not a student or that a student can-
not teach a unit. Note that the negation of roles is
only available in the nRQL query language but not in
the concept language of RacerPro (in order to guaran-
tee decidability). Here are two examples: in question
(36) a concept is negated and in question (37) a role:

36. Who is not a student?

37. Who does not teach a unit?

The first question returns all instances that are not
part of a concept and the second question returns all
instances that are not a filler of a specific role with
an existential restriction.

5.3.5 Implied Role Fillers

In nRQL only explicitly modeled role fillers are re-
trieved by default. However, a DL knowledge base
can have logically implied role fillers whose presence
is enforced in the logical models of the knowledge
base. Let us assume that we asserted at some point
that Anna Grau is a professor then Anna must have
a PhD but this information might not be explicitly
present in the DL knowledge base. In nRQL, it is
possible to identify those individuals which have a
certain role filler that is not explicitly modeled in the
knowledge base using a negation as failure (neg) and
a project-to operator. In CNL, we use the specific
keyword show to trigger the same functionality:

38. Show which professor has a PhD.

This imperative construction returns individuals
which have an implicit role filler which is not explicitly
modeled in the knowledge base. Note that the answer
set of (38) is different from that of question (39):

39. Find all professors who have a PhD.

The answer to (38) returns only the implicit in-
stances while (39) returns all instances.

5.3.6 Concrete Domains

In nRQL, the concrete domain part of an ABox can
be queried using concrete domain predicates. In CNL,
we can use questions such as:

40. Who’s age is 18?

41. Who is the oldest student?

for this purpose. Note that the relation between the
adjective oldest and the concrete domain attribute
age needs to be handled in the linguistic lexicon of
the CNL processor.

5.3.7 Synonyms

In nRQL it is possible to check whether two instances
are individual synonyms or not. In CNL we can check
this using the expression same as in a question, for
example:

42. Is Kylie Johns the same as Kylie
Johns-Pedersen?

43. Is Kylie Johns not the same as Kylie
Johns-Pedersen?

That means synonyms need not to be modeled in
the linguistic lexicon. As we will see in the next sec-
tion, only orthographic variants of content words are
modeled in the linguistic lexicon but not synonyms.



5.3.8 Conjunctive Queries

A conjunctive query is a complex nRQL query that is
constructed from unary and binary query atoms with
the help of the query body constructor and. As soon
as we work with a DL knowledge base that relies on
reification of relations we will end up with complex
queries in the translation. The following CNL ques-
tions are complex questions:
44. On what day does Kylie Johns take

COMP101?

45. Where does Kylie Johns take COMP101?

46. Which student who takes COMP101 does
not take MATH102?

Note that the processing of the two questions (44)
and (45) relies on a DL knowledge base that reifies
relations as discussed in Section 4.3 while (46) does
not. However, all three CNL questions are complex
queries: the translation of (44) and (45) results in
two conjunctive queries and the translation of (46)
results in a complex query with a negation as failure
constructor.

6 The CNL Processor

The task of the CNL processor is to translate ABox
and TBox statements as well as questions written in
controlled natural language into the input format of
the DL reasoner, and to generate answers in CNL
from the output of the reasoner.

The CNL processor uses for this task a bidirec-
tional unification-based grammar and a linguistic lex-
icon that contains syntactic constraints and informa-
tion about the mapping between the linguistic expres-
sions and the terms of the DL.

The kernel of the grammar is implemented as a
definite clause grammar that can either run inde-
pendently or be processed by a chart parser (Kay
1980) that stores processed substrings and hypothe-
ses about substrings. Storing processed substrings
reduces redundancies during the parsing process, and
the maintained hypotheses can be used to predict the
next possible processing steps. As we will see later,
the chart parser implements a meta-interpreter that
generates lookahead information that can be used to
support the writing process of the user in a predictive
way.

The CNL processor first translates the input sen-
tences into TPTP notation (Sutcliffe & Suttner 1998)
and then further into the DL reasoner’s target for-
mat. TPTP is a widely used notation for represent-
ing problems for automated theorem proving in first-
order logic. The use of TPTP as an intermediate rep-
resentation language has the advantage that we can
extend the grammar of the CNL processor later and
interface the processor easily with other (first-order)
reasoning services. TPTP gives us the necessary flex-
ibility to translate statements and questions into a
suitable target format.

In our case, the CNL processor translates ABox
and TBox statements via TPTP notation into Racer-
Pro’s KRSS format and adds the resulting formulas
to the DL knowledge base. Questions too are first
translated into TPTP notation but then transformed
into nRQL syntax, and finally answered over the DL
knowledge base using RacerPro’s reasoning engine.
The TPTP representation of a question is stored by
the language processor and used as a template for an-
swering questions. This is possible because the syn-
tactic structure of questions and statements is related
in a systematic way in CNL. That means that the
same CNL grammar can be used as a processor and
as a generator.

6.1 The CNL Lexicon

The lexicon of the CNL processor distinguishes be-
tween two main categories of words: content words
and function words. Content words (nouns, ad-
jectives, verbs, prepositions, and proper nouns) are
closely related to concept names, role names, and
names for individuals; while function words (conjunc-
tion, disjunction, negation, quantifiers, cardinals, and
operators) are closely related to DL constructors –
provided that we model the DL knowledge base in a
linguistically motivated way. Function words are pre-
defined in the lexicon and build the scaffolding of the
CNL while content words can be added by the user
to the lexicon.

In order to exclude ungrammatical sentences in
CNL, the lexicon contains syntactic information that
enforces, for example, number agreement between the
subject and the verb of a sentence like (47) and the
subject and the auxiliary verb of a question like (48):

47. David Miller takes COMP101.

48. When does David Miller take COMP101?

Below are the lexical entries for the proper nouns
David Miller and COMP101:

49. lex(cat:[pn],wf:[‘David’,‘Miller’],
sn:[],
syn:[third,sg],sort:[person],
fol:X^named(X,john_miller)).

50. lex(cat:[pn],wf:[‘COMP101’],
sn:[[‘COMP’,101],[‘COMP-101’],

[comp,101],[comp-101]],
syn:[third,sg],sort:[entity],
fol:X^named(X,comp101)).

These two entries contain syntactic information,
sortal information and information that is required to
generate the TPTP representation. The syntactic in-
formation deals with number agreement between the
subject and the verb as explained above. There is also
orthographic information available that deals with ap-
proved variants of the input, for example: COMP-101
instead of COMP101, etc.

In order to resolve the ambiguity of prepositional
phrases in CNL, the lexicon includes sortal informa-
tion for nouns, proper nouns and prepositions so that
the correct role name can be derived for a preposi-
tional phrase, for example in:

51. David Miller takes COMP101 on Monday
on South Campus.

the preposition on is ambiguous on the surface level
of the CNL. The sortal information in the lexicon
for the proper noun and for the preposition disam-
biguates the two prepositional phrases on Monday
and on South Campus. This results in two different
role names in the DL representation:

52. (related e2 monday has_day)

53. (related e2 south_campus has_location)

Please note that the sortal information is not re-
quired, if we do not allow for this kind of prepositional
phrases in the CNL – it is in theory possible to con-
struct a reified version of a CNL sentence such as (51)
that does not use prepositional phrases but offers the
same expressivity, for example in the following way:

54. E1 is a take relation.
E1 has David Miller as an agent.
E1 has COMP101 as a theme.
E1 has Monday as a day.
E1 has South Campus as a location.



Let us assume that an ontology has already been
constructed with the help of an ontology editor in
a linguistically motivated way and that we are only
interested in building an interface for querying the
DL knowledge base. If that it the case, then we can
automatically extract all concept names, role names,
and names for individuals from the ontology using the
following RacerPro functions:

55. (all-atomic-concepts)

56. (all-roles)

57. (all-individuals)

and populate the lexicon semi-automatically.

6.2 The CNL Grammar

The CNL grammar distinguishes three different
modes: a TBox mode for processing terminological
statements, an ABox mode for processing assertional
statements and for generating answers to questions,
and a query mode for processing questions. The
grammar rules of the ABox mode are bidirectional
(that means they can be used to analyse and gener-
ate statements) and some of these grammar rules can
also be used to process questions.

6.3 Processing Statements

Below is an example of an ABox grammar rule that
gives a high-level overview about how sentences writ-
ten in CNL are parsed and translated during the pars-
ing process into TPTP formulas:

58. s0(mode:M,
fol:LF1,
gap:G1-G3,
para:P1-P3,
ant:A1-A3) -->

n3(mode:M,
syn:[subj,Per,Num],
sort:_,
fol:LF2^LF1,
gap:[]-G2,
para:P1-P2,
ant:A1-A2),

v3(mode:M,
syn:[fin,Per,Num,_,_,_],
fol:_E^LF2,
gap:G1-G3,
para:P2-P3,
ant:A2-A3).

This top-level grammar rule takes part in the
translation of the following ABox statement:

59. David Miller takes COMP101 on Monday.

The grammar rule (58) breaks this statement into
a noun phrase David Miller and into a verb phrase
takes COMP101 on Monday and combines the logi-
cal form of the noun phrase with the logical form of
the verb phrase in a compositional way. Each word
form in this sentence is associated with a partial logi-
cal form in the lexicon; these partial logical forms are
merged (via unification) during the parsing process
into a complete TPTP formula for the input sentence.
The grammar rule contains various feature structures
that are used for syntactic, semantic, and pragmatic
purposes; one of these feature structures (syn) guar-
antees for example that the noun phrase agrees in per-
son and number with the verb phrase; other feature
structures are used to deal with the different types of
sentences (mode), the composition of the logical form

(fol), discontinuous constituents in the input string
(gap), the construction of a paraphrase (para) that
makes the interpretation of the sentence clear, and
the collection of noun phrase antecedents (ant) for
anaphora resolution.

The output of the grammar is a logical formula in
TPTP format, in our case the following one:

60. input_formula(university,axiom,
(? [A]: (named(A,david_miller) &

(? [B]: (property(B,has_agent,A) &
(event(B,take) & contemp(B,u)) &

(? [C]: (named(C,comp101) &
property(B,has_theme,C) &

(? [D]: (timex(D,monday) &
property(B,has_day,D)))))))))).

This logical formula is then further translated by
the CNL processor into RacerPro’s KRSS notation:

61. (instance e1 take)
(related e1 david_miller has_agent)
(related e1 comp101 has_theme)
(related e1 monday has_day)

Note that the TPTP representation (60) con-
tains additional information (contemp(B,u)) about
the time when the utterance occurred since the CNL
processor can handle tense (e.g. present tense and
past tense). This information does not appear in the
KRSS representation since DL can not deal with this
kind of information and therefore all verb forms must
be in present tense in a strict DL setting. However,
the information about tense is potentially useful in
other logical frameworks.

6.4 Processing Questions

The CNL processor distinguishes between wh-
questions, yes/no-questions, and imperative con-
structions. It is well-known that the structure of
questions in natural language is related in a system-
atic way to declarative sentences. For example, the
declarative sentence (59) has the following functional
structure:

62. Subject: (David Miller)
Verb: (takes)
Object: (COMP101)
Modifier: (on Monday)

In the case of wh-questions, the query word is re-
lated to one of these functional elements. For example
in:

63. On what day does David Miller take
COMP101?

a constituent in modifier position has been replaced
by a query expression (on what day) and this query
expression has been moved to the front of the sentence
where it functions as a filler and is used together with
a do-operator letting a gap behind:

64. [On what day]_filler does David Miller
take COMP101 [ ]_gap?

When the CNL grammar processes (63), the query
expression which acts as a filler for this gap is moved
back into its original position. Schematically, the re-
sult of this movement process looks as follows:

65. Subject: (David Miller)
Verb: (takes)
Object: (COMP101)
Modifier: (on what day)



The TPTP representation for the question is con-
structed during the parsing process. That means at
the same time when the syntactic movement of the
query expression takes place. As already explained in
the previous section, each word form is related to a
partial logical form in the linguistic lexicon. For ex-
ample, the processing of the query expression on what
day triggers the following partial logical form:

66. (timex(F,G) & property(C,has_day,F))

and the processing of the entire question (63) results
in the subsequent conjunctive query which contains
the logical form for the query expression as a part:

67. input_formula(university,conjunctive_query,(
(? [A]: (named(A,david_miller) &

(? [B]: (named(B,comp101) &
(? [C]: ((property(C,has_agent,A) &

(event(C,take) &
(property(C,has_theme,B) &
contemp(C,u)))) & (timex(F,G) &
property(C,has_day,F))))))))

=> answer(F))).

The CNL processor takes this TPTP formula and
transforms it into a conjunctive nRQL query:

68. (retrieve (?2) (and (?1 david_miller
has_agent) (?1 take) (?1 comp101
has_theme) (?1 ?2 has_day)))

Note that yes/no-questions are treated in a similar
way as wh-questions. The CNL processor first gen-
erates a normalised TPTP representation that looks
similar to the representation of a declarative sentence,
and then translates this representation into a Boolean
conjunctive query, for example (69) into (70):

69. Does David Miller take COMP101?

70. (retrieve nil (and (?1 david_miller
has_agent) (?1 take) (?1 comp101
has_theme)))

The TPTP representation of a question is stored
by the CNL processor and can be used as a starting
point to answer questions as we will see in the next
section.

6.5 Generating Answers

The relationship between declarative sentences and
questions can be used for generating answers to ques-
tions in CNL. Internally, all TPTP formulas are anno-
tated with syntactic information during the parsing
process. For example, the TPTP formula (67) con-
tains additional annotations (#) for all predicates that
have been derived from content words, for example:

71. event(B,take)#[inf,_,_,pres,no,no]

Once the DL reasoner comes back with an answer
for a question, the stored TPTP representation of a
question is transformed into a TPTP representation
for a declarative sentence which contains an update
of the relevant syntactic annotations, for example:

72. event(B,take)#[fin,3rd,sg,pres,no,no]

That means the CNL processor can now generate
the correct verbal form (takes - fin) for the answer
string:

73. David Miller takes COMP101 on Monday.

Since the DL reasoner deals with subsumption hi-
erarchies and concept definitions, there is no need to
encode this ontological information in the linguistic
lexicon. We get this terminological information for
“free” from the DL reasoner during question answer-
ing. For example, the following questions:

74. Who studies COMP101?
75. Which person studies COMP101?
76. Which student studies COMP101?

return all the same answers because the query word
who is more general than person and person subsumes
student.

7 Writing in CNL

The writing of DL statements and questions in con-
trolled natural language can be supported with the
help of a predictive text editor that guides the writ-
ing process in CNL (see (Thompson et al. 2005,
Chintaphally et al. 2007) for an introduction). We
have implemented such editing techniques in the past
(Schwitter et al. 2003) which have some similarities
to editing techniques used in programming language
environments. The basic idea here is to process
the grammar rules with the help of a chart parser.
A chart parser stores information about well-formed
substrings as well as information about hypotheses of
substrings in a chart (Kay 1980, Gazdar & Mellish
1989) and avoids repetition of work by looking up
substrings in the chart instead of recomputing them.
Complete and incomplete analyses are stored as so-
called edges in the chart. Edges that correspond to
partially recognized substrings are said to be active,
while inactive edges represent completely recognised
substrings. In our case, an active edge is a term of
the form:

77. edge(Number,Pos1,Pos2,Category1,
Found,[Category2|Categories]).

This term consists of the actual sentence number
(Number) which serves as an index, a start position
(Pos1) and an end position (Pos2) of a substring,
the category (Category1) on the left-hand side of
the grammar rule, a list of categories that have been
found (Found) on the right-hand side of the grammar
rule, and a list of remaining categories to be found
([Category2|Categories]). Chart parsing allows us
– after processing of each new word form – to search
through the active edges in the chart in order to col-
lect the categories of those word forms that can follow
the current input string.

Let us assume that the user is working in the query
mode and plans to enter the following question into
the text editor:

78. Where does David Miller take COMP101?

At the beginning, the text editor will display the
initial lookahead information for questions. This in-
formation is grouped into three categories since the
number of possible lexical entries for these categories
is already large:

79. [ wh-question | yes/no-question |
imperative construction ]

After clicking on the hypertext link for the
wh-question, the editor will display the lookahead
information that falls under this category:

80. [ Who | What | Which | Where | ... ]



The user can type (or select) one of these query
words – in our case where – that is then sent to the
CNL processor. The chart parser of the CNL proces-
sor initialises the chart, adds edges into the chart, and
activates rules in order to expand the chart. This re-
sults in a set of new hypothesis that can be harvested
for new lookahead information, in our case the editor
will display the following function words:

81. [ does | is ]

After entering the operator does, the editor will
display the following lookahead categories:

82. [ determiner | proper noun ]

At this point, the user has to make a decision
whether he or she wants to enter a determiner or a
proper noun. After entering the proper noun David
Miller (or selecting it from a list of approved proper
nouns) more lookahead information is displayed and
this process continues until the structure of the ques-
tion is complete.

Of course, an experienced user can switch off this
lookahead facility and rely on the error messages that
the parser generates if the user does not stick to the
rules of the CNL. These predictive interface tech-
niques guarantee that only sentences are added to the
DL knowledge base and that only questions are used
that conform 100% to the rules of the CNL.

8 Conclusions

This paper argued that a DL knowledge base should
be constructed in a linguistically motivated way in
order to support question answering in an optimal
way. To achieve this the naming conventions used for
constructing the ontology should be based on a set of
well-defined linguistic patterns and on a terminology
that occurs naturally in the application domain.

I showed that such a linguistically motivated nam-
ing convention makes it easier to create an ontology
on the level of a machine-oriented controlled natu-
ral language. The controlled natural language can be
used to express ABox and TBox statements as well
as a query and feedback language. The presented ap-
proach has a number of attractive features: the con-
trolled natural language looks like English and is easy
to understand by humans and easy to process by ma-
chines; furthermore, the language is so precisely de-
fined that it can be translated unambiguously into DL
and thus is in fact a formal language. A logic-based
grammar is used to process statements and questions,
and the same grammar can run “backwards” taking
logical formulas in TPTP notation as input and gen-
erate answers to questions in controlled natural lan-
guage. The user does not need to learn and remember
the rules of the controlled natural language since the
writing process is supported with the help of predic-
tive interface techniques.

It is important to note that not all parts of a DL
knowledge base need to be constructed in controlled
natural language. The aim of this paper was to il-
lustrate that this is in principle possible. However,
it might be the case that a knowledge engineer feels
more comfortable using an ontology editor such as
Protégé (Horridge et al. 2004) to develop the termi-
nological knowledge for an application domain. As
long as the knowledge engineer develops the TBox of
this knowledge base in a linguistically motivated way
– as sketched in this paper –, then this terminological
knowledge can be combined with assertional knowl-
edge expressed in controlled natural language. For
some applications, it might be possible to extract this

assertional knowledge from existing textual informa-
tion and represent it in controlled natural language
so that it can be checked easily and modified by a
human (and still be processed by a machine).

I am convinced that controlled natural languages
are a promising approach for creating DL knowledge
bases and that many applications can benefit from
such a high-level interface language. I am currently
investigating how controlled natural languages can be
used as an interface language to the Semantic Web,
as a language for expressing business rules, and as a
query and alert language in a decision-support sys-
tem.
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(2005), Querying ontologies: A controlled English
interface for end-users, in: Proceedings of the 4th
International Semantic Web Conference, pp. 112–
126.

Chintaphally, V.R., Neumeier, K., McFarlane, J.,
Cothren, J., Thompson, C.W. (2007), Extend-
ing a Natural Language Interface with Geospatial
Queries, in: IEEE Internet Computing, pp. 82–85.

Copestake, A., Sparck-Jones, K. (1998), Natural lan-
guage interfaces to databases, in: Knowledge Engi-
neering Review 5, pp. 225–249.

Cregan, A., Schwitter, R., Meyer, T. (2007), Sydney
OWL Syntax – towards a Controlled Natural Lan-
guage Syntax for OWL 1.1, in: C. Golbreich, A.
Kalyanpur, and B. Parsia (eds.), 3rd OWL Expe-
riences and Directions Workshop (OWLED 2007),
Vol. 258, CEUR Proceedings.

Gazdar, G., Mellish, C. (1989), Natural Language
Processing in Prolog. An Introduction to Compu-
tational Linguistics, Addison-Wesley.

Gruber, T. (1993), A translation approach to portable
ontologies, in: Knowledge Acquisition, 5(2), pp.
199–220.
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NLP-Reduce: A “näıve” but Domain-independent
Natural Language Interface for Querying Ontolo-
gies, 4th European Semantic Web Conference
(ESWC 2007), Innsbruck, Austria, pp. 1–2.

Kaufmann, E., Bernstein, A. (2007), How Useful
are Natural Language Interfaces to the Semantic
Web for Casual End-users?, in: Proceedings of the
6th International Semantic Web Conference (ISWC
2007), Busan, Korea, pp. 281–294.

Kay, M. (1980), Algorithm Schemata and Data Struc-
tures in Syntactic Processing, CSL-80-12, Xerox
Parc, Palo Alto, California.

Lopez, V., Motta, E., Uren, V. (2006), PowerAqua:
Fishing the semantic web, in: The Semantic Web:
Research and Applications, Lecture Notes in Com-
puter Science, pp. 393–410.

Mellish, C., Sun, X. (2005), The Semantic Web as a
Linguistic Resource, in: 26th SGAI International
Conference on Innovative Techniques and Applica-
tions of Artificial Intelligence, Peterhouse College,
Cambridge, UK, December 12-14th.

Mithun, S., Kosseim, L., Haarslev, V. (2007), Resolv-
ing Quantifier and Number Restriction to Question
OWL Ontologies, in: Proceedings of the 3rd Inter-
national Conference on Semantic, Knowledge and
Grid, IEEE Computer Society, pp. 218–223.

Noy, N., Rector, A. (2006), Defining N-ary Rela-
tions on the Semantic Web, W3C Working Group
Note 12 April 2006, http://www.w3.org/TR/swbp-
n-aryRelations/.

Patel-Schneider, P.F., Swartout, B. (1993),
Description-Logic Knowledge Representation
System Specification from the KRSS Group of the
ARPA Knowledge Sharing Effort, 1 November.

Popescu, A.-M., Armanasu, A., Etzioni, O., Ko, D.,
Yates, A. (2004), Modern Natural Language Inter-
faces to Databases: Composing Statistical Parsing
with Semantic Tractability, in: Proceedings of the
20th International Conference on Computational
Linguistics (COLING), Article No. 141.

Prud’hommeaux, E., Seaborne, A. (2008), SPARQL
Query Language for RDF, W3C Recommenda-
tion 15 January 2008, http://www.w3.org/TR/rdf-
sparql-query/.

Racer Systems (2007), RacerPro User’s Guide, Ver-
sion 1.9.2, Technical report, http://www.racer-
systems.com.

Reichert, M., Linckels, S., Meinel, C., Engel, T.
(2004), Student’s Perception of a Semantic Search
Engine, in: Proceedings of IEEE IADIS Interna-
tional Conference on Cognition and Exploratory
Learning in Digital Age (CELDA), Porto, Portu-
gal, pp. 139–147.

Schober, D., Kusnierczyk, W., Lewis, S.E., Lomax,
J., Members of the MSI, PSI Ontology Working
Groups, Mungall, C., Rocca-Serra, P., Smith, B.,
Sansone, S.-A. (2007), Towards naming conven-
tions for use in controlled vocabulary and ontology
engineering, in: Proceedings of Bio-Ontologies SIG
Workshop 2007.

Schwitter, R., Ljungberg, A., Hood, D. (2003),
ECOLE – A Look-ahead Editor for a Controlled
Language, in: Proceedings of EAMT-CLAW03,
May 15-17, Dublin City University, Ireland, pp.
141–150.

Schwitter, R., Tilbrook, M. (2004), Controlled Natu-
ral Language meets the Semantic Web, in: S. Wan,
A. Asudeh, C. Paris (eds.), Australasian Language
Technology Workshop 2004, pp. 55–62.

Schwitter, R., Tilbrook, M. (2006), Let’s Talk in De-
scription Logic via Controlled Natural Language,
in: Logic and Engineering of Natural Language Se-
mantics 2006, (LENLS2006), Tokyo, Japan, June
5-6th.

Schwitter, R., Kaljurand K., Cregan, A., Dolbear, C.,
Hart, G. (2008), A Comparison of three Controlled
Natural Languages for OWL 1.1, 4th OWL Expe-
riences and Directions Workshop (OWLED 2008
DC), Washington, 1-2 April.

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A.,
Katz, Y. (2007), Pellet: A practical OWL-DL rea-
soner, in: Journal of Web Semantics, 5(2), pp. 51–
53.

Sutcliffe, G., Suttner, C.B. (1998), The TPTP Prob-
lem Library: CNF Release v1.2.1., in: Journal of
Automated Reasoning, 21(2), pp. 177–203.

Thompson, C.W., Pazandak, P., Tennant, H.R.
(2005), Talk to Your Semantic Web, in: IEEE In-
ternet Computing, 9(6), pp. 75–79.

Tsarkov, D., Horrocks, I. (2006), FaCT++ Descrip-
tion Logic Reasoner: System Description, in: Pro-
ceedings of IJCAR 2006, LNAI 4130, Springer, pp.
292–297.

Wang, C., Xiong, M., Zhou, Q., Yu, Y. (2007),
PANTO: A Portable Natural Language Interface
to Ontologies, in: Proceedings of the 4th Eu-
ropean Semantic Web Conference (ESWC 2007),
Innsbruck, Austria, pp. 473–487.
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