
Let’s Talk in Description Logic via Controlled
Natural Language

Rolf Schwitter and Marc Tilbrook

Centre for Language Technology, Macquarie University
Sydney NSW 2109, Australia

{schwitt, marct}@ics.mq.edu.au

Abstract. In this paper, we will argue that a well-defined subset of
English can be used to express the same kind of information as the
description logic layer of the Web Ontology Language OWL DL. We
will first show what kind of problems current notations for OWL have
and then discuss how an OWL ontology can be constructed alternatively
in a controlled natural language (CNL). In particular, we will present
the details of a CNL which offers the same expressive power as OWL
DL for describing the facts, axioms and restrictions which may occur
in an OWL ontology. An ontology specification written in CNL can be
unambiguously translated into OWL abstract syntax and vice versa with
the help of a bi-directional grammar. The users of the CNL do not need
to learn the rules of the language, since the writing process is supported
by an intelligent authoring tool.

1 Introduction

Most information on the existing Web is designed for humans to read but not
for computers to manipulate in a meaningful way. The goal of the Semantic
Web is to give information explicit meaning making it is easier for computers to
automatically process and share this information [3].

In this context, it is the task of a formal ontology to give information explicit
meaning. A formal ontology describes the intensional information of a specific
domain via a set of terminological axioms. These axioms define the classes to
which the individuals in the domain may belong to, the relationships which may
exist among these individuals, and the properties these individuals may have.
The extensional information of a domain can then be provided via a collection
of facts in a knowledge base which make concrete assertions about instances
of classes, relations, and properties. Depending on the expressive power of the
underlying formal language, inference rules can be used for answering questions
over the knowledge base as well as for checking whether or not the formalized
knowledge is correct, meaningful, or redundant.

Since ontology construction is a recurrent task and since ontologies will be dis-
tributed over the Web, the World Wide Web Consortium (W3C) developed the
Web Ontology Language (OWL) for defining and instantiating ontologies [20].



2 Rolf Schwitter and Marc Tilbrook

OWL consists of a family of languages and provides three increasingly expressive
sublanguages: OWL Lite, OWL DL, and OWL Full.

OWL DL is interesting, since it has a version of description logics as its formal
underpinning and is the most expressive of these three sublanguages which does
not compromise completeness and decidability [9]. Because an OWL DL ontology
can be translated into a description logic representation, it is possible to perform
automated reasoning tasks over the formalized knowledge using state-of-the-art
description logic reasoners (for example [8]).

Although there exist a number of good ontology development tools, for exam-
ple Protégé [12, 14] or SWOOP [11], experience shows that OWL DL ontologies
are difficult to construct from scratch. It has been convincingly argued that the
exact meaning of expressions in OWL should first be paraphrased in explicit
natural language to get a clear understanding of the logical meaning and the
potential inferences before trying to encode these expressions in a formal nota-
tion [17].

We will argue in this paper that if it is possible to paraphrase an OWL on-
tology precisely in explicit natural language, then it is also possible to write
this ontology with adequate tool support [18, 22] in a controlled natural lan-
guage (see [10] for an introduction) and then translate this controlled language
automatically into OWL abstract syntax [15] and vice versa.

2 Features of OWL

OWL relies on XML [4] for syntax and is semantically layered on top of RDF/
RDFS [13] from where the three sublanguages borrow different sets of con-
structors which affect their expressive power. In particular, OWL uses RDF
URI references (URIrefs) as a naming mechanism, many built-in datatypes from
XML Schema, and the basic fact-stating capabilities of RDF and the class- and
property-structuring abilities from RDFS [5, 9]. OWL DL extends the RDFS
vocabulary and makes it possible to specify, for example:

– arbitrary logical combinations of classes and restrictions via set operations;
– classes via direct enumeration of their members;
– properties as transitive, symmetric, functional, inverse functional or as the

inverse of other properties;
– two classes or two properties as equivalent;
– a set of classes as disjoint from each other;
– individuals as pairwise identical or different;
– restrictions on how properties behave that are local to a class.

OWL DL includes all language constructs of OWL, but some of them can
only be used under certain restrictions to retain computational completeness and
decidability.



Let’s Talk in Description Logic via Controlled Natural Language 3

3 Notations for OWL

To put it simply, an OWL ontology is an RDF graph consisting of a set of RDF
triples. As it is the case for any RDF graph, an OWL ontology graph can be
written in many different notations. The three most important notations for
OWL are: N-Triples notation [1], RDF/XML exchange syntax [6], and OWL
abstract syntax [15].

3.1 N-Triples Notation

The N-Triples notation is a line-oriented, plain text format for encoding RDF
graphs. In this notation, each statement in a graph is written as a triple of ordered
URIrefs which distinguish the subject, predicate, and object in a statement and
indicate which (external) vocabularies are referred as Fig. 1 illustrates:

<http://www.example.org/pizza.owl#VegetarianPizza>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/2002/07/owl#Class> .

Fig. 1. Full N-Triples Notation

An OWL ontology usually includes a set of XML namespace declarations
which provide an abbreviation mechanism for URIrefs and make an ontology
more readable. Although this abbreviated notation is more compact, it still has
a number of severe shortcomings: Firstly, the N-Triples notation breaks down
many OWL constructs – for example property restrictions and enumerations –
into several triples which makes the notation difficult to read. Secondly, it is hard
to reconstruct and understand how the individual triples belong together, since
grouping is not possible in this notation. Thirdly, all triples are accessible and
therefore it is not possible to exclude circular or other unusual structures [9].

Notation 3 [2] is an alternative but non-standard notation for RDF graphs
and provides a grouping mechanism and a shorthand notation for a few con-
structors.

3.2 RDF/XML Exchange Syntax

The need to maintain maximum upward compatibility with existing Web lan-
guages based on XML and RDF required the use of an RDF/XML based syntax
for OWL [1, 6]. Unlike N-Triples, which are intended as a shorthand notation,
RDF/XML is the normative exchange syntax for publishing and sharing OWL
ontologies on the Web. This notation is extremely difficult to read and write for
humans. It was primarily designed to be processed by machines and not intended
for human consumption.



4 Rolf Schwitter and Marc Tilbrook

3.3 OWL Abstract Syntax

Using the N-Triples notation or the RDF/XML exchange syntax does not pay
enough attention to the readability of an ontology. The goal of the OWL abstract
syntax is to fix this problem and to provide a mapping from this abstract syntax
to RDF graphs [15]. OWL abstract syntax uses a frame-like notation, where the
information about a class or property is grouped together in one large syntactic
chunk. Below is an example of a class axiom and property axiom written in OWL
abstract syntax.

Fig. 2 shows a class axiom which defines a VegetarianPizza class in OWL
abstract syntax. Here, the class axiom states that the class VegetarianPizza is
exactly equivalent (= complete) to the conjunction of the superclass Pizza and a
number of restrictions (which both occur on the right hand side of the notation).
The two set constructors complementOf select all individuals that do not fall under
the specified restrictions (restriction). These negated restrictions describe that
there exists at least one value (someValueFrom) for the hasTopping property that
belongs both to the MeatTopping class and also to the FishTopping class.

Class(VegetarianPizza complete

complementOf(restriction(hasTopping

someValuesFrom(MeatTopping)))

complementOf(restriction(hasTopping

someValuesFrom(FishTopping)))

Pizza)

Fig. 2. Definition of VegetarianPizza Class in OWL Abstract Syntax

Fig. 3 shows a property axiom which describes the hasTopping property in
OWL abstract syntax. Here, the property hasTopping is defined as an ObjectPro-

perty taking only individual values but no datatypes as objects. Furthermore,
the hasIngredient property is stated to be a superproperty of the hasTopping

property. Properties have a domain and a range, and link individuals from the
domain to individuals from the range. In our case, the hasTopping property
links individuals of the Pizza class to individuals of the PizzaTopping class. The
inverseOf property characteristic specifies that hasTopping is the inverse of is-
ToppingOf. That means hasTopping implies isToppingOf and isToppingOf implies
hasTopping or simply: hasTopping is equivalent to isToppingOf.

The OWL abstract syntax improves the readability in contrast to the other
two notations. However, it requires an understanding of the meaning of the con-
structors and their logical implications which is not always obvious and straight-
forward to memorise for a novice user.



Let’s Talk in Description Logic via Controlled Natural Language 5

ObjectProperty(hasTopping super(hasIngredient)

domain(Pizza)

range(PizzaTopping)

inverseOf(isToppingOf))

Fig. 3. Definition of hasTopping Property in OWL Abstract Syntax

4 Controlled Natural Language (CNL)

As an alternative to these notations, we suggest using a controlled natural lan-
guage (CNL) which offers the same expressive power as OWL DL for describing
the facts and axioms which are part of an OWL ontology. A CNL is a well-
defined subset of a natural language with a restricted grammar and a restricted
vocabulary [10]. In contrast to full natural language, these restrictions usually
reduce the ambiguity of the language, increase the readability for humans, and
improve the processability for machines [7, 19, 21]. As we will see, the users of
the CNL do not need to learn the rules of the language, since they are supported
by an intelligent authoring tool that guides the writing process [18, 22].

4.1 Expressing Facts in CNL

In our context, facts are either used to state information about a particular
individual or to make individuals pairwise identical or distinct.

Assertions. The first kind of facts can be used to make assertions which assign
an individual to a specific class or inform about the properties and values of
that individual. In the simplest case, these assertions can be expressed in CNL
as simple sentences consisting of a subject-predicate-object pattern, for example:

1. France is a country.
2. Luc orders exactly three pizzas.

Sentence 1 ties an individual to a class of which it is a member via an indef-
inite noun phrase and sentence 2 specifies the exact number of elements which
can occur in the object position of a binary relation via a cardinal noun phrase.

In CNL, it is possible to build composite sentences from simpler sentences
with the help of coordinators as in sentence 3 and subordinators as in 4:

3. France is a country and Paris is a city.
4. Luc who orders exactly three pizzas lives in Paris.

In CNL, variables can be used to identify anonymous resources and provide
the necessary connectivity between more than one simple sentences:



6 Rolf Schwitter and Marc Tilbrook

5. Luc has X as an address. X has Grande Rue as a street name. X has 36 as
a street number.

In the example above, Grande Rue is a Unicode string and 36 is a positive
integer. The authoring tool of the CNL distinguishes between plain literals (Uni-
code strings) and typed literals (which occur with an internal URIref) and makes
them distinct during the writing process.

Equality and Inequality. The second kind of facts provides a mechanism for mak-
ing two individuals pairwise identical as in sentence 6, one individual different
from another one as in 7, or a number of individuals mutually different as in 8:

6. Luc is identical to Lucien.
7. Australia is different from Austria.
8. England and Italy and France are different.

Note that if two individuals have different names, but have not been specified
as different, then it may still be possible to derive by inference that they must
be identical, since there exists no unique name assumption in OWL.

4.2 Expressing Axioms in CNL

In our context, axioms are used to provide terminological information about
classes and properties and to build hierarchical structures.

Class Axioms in CNL. Basically, class axioms are used to specify that a
class is a subclass of another class thereby building a class hierarchy or to state
that a class is exactly equivalent to the conjunction of a superclass and a set of
restrictions thereby stating that a class definition is complete.

Class Hierarchies. In CNL, an if-then construction is used to relate a subclass
to a superclass and to organise classes in a hierarchical structure, for example:

9. If X is a vegetarian pizza then X is a pizza.
10. If X is a pizza then X is a dish.

The two sentences 9 and 10 only provide partial definitions describing where
the classes are located in a class hierarchy, but they do not define these classes
completely via a set of necessary and sufficient conditions.

Definitions. To state a class definition in CNL as complete, an iff-then construc-
tion is used to indicate that a class is equivalent to the conjunction of a superclass
plus a set of restrictions, for example:

11. Iff X is a vegetarian pizza then X is a pizza that does not have some meat
as a topping and does not have some fish as a topping.



Let’s Talk in Description Logic via Controlled Natural Language 7

Here, the relative clause that ... together with the corresponding verb phrase
triggers OWL’s restriction constructor as illustrated in Fig. 2, the negation
does not corresponds to OWL’s complementOf constructor, and the quantifier
some corresponds to OWL’s someValueFrom property restriction.

Enumerations. In CNL, classes can be defined via a direct enumeration of their
members and this class membership can be expressed with the help of an either-
or construction, for example:

12. Iff X is a country then X is either England or Italy or France.

Here, no other individual than either England or Italy or France belongs
to the country class. Note that these individuals need to be asserted to be all
different from each other – as already mentioned in the discussion of sentence 8.

Equivalent and Disjoint Classes. Classes can be made equivalent to other classes
as in sentence 13 or disjoint from other classes as in sentence 14:

13. Iff X is a vegetarian pizza then X is a veggie pizza.
14. Iff X is a mushroom pizza then X is not a cheese pizza.

Equivalent classes take the same individuals as instances and can be used to
create synonymous classes. Disjoint classes guarantee that an individual which
is a member of one class cannot at the same time be an instance of a specified
other class.

Property Axioms in CNL. Basically, property axioms assert general facts
about the members of a class and specific facts about individuals. In CNL, there
are two different types of properties available: properties which take individuals
as values in object position and properties which take datatypes as values in
object position.

Property Hierarchies. Like classes, properties can be arranged in a hierarchy, for
example:

15. If X has Y as a topping then X has Y as an ingredient.
16. If X has Y as an ingredient then X has Y as a part.

Properties can be restricted in various ways in their subject and object po-
sition as we will discuss below.

Equivalent Properties. Like classes, properties can be made equivalent to other
properties using an iff-then construction, for example:

17. Iff X has Y as an ingredient then X has Y as a component.

Stating property equivalence provides a mechanism for defining synonyms
which is particularly useful if two ontologies need to be merged.



8 Rolf Schwitter and Marc Tilbrook

Property Restrictions in CNL. As in OWL various forms of restrictions can
be used in CNL to specify global, local or cardinality constraints on properties.

Global Restrictions. Properties can be given global domain restrictions in their
subject position as well as global range restrictions in their object position, for
example:

18. If X has Y as a topping then X is a pizza and Y is a pizza topping.

Here, the pizza class is the domain and the pizza topping class is the range
of the property which relates instances of the two classes to each other. These
restrictions are called global, since they are stated on the properties and not just
on a property when it is associated with a particular class.

Local Restrictions. Properties can be given local restrictions in the object posi-
tion specifying that all values, at least one value, or a specific value is a member
of a particular class:

19. Iff X is a meaty pizza then X is a pizza that has only meat as topping.
20. If X is a choc sundae then X has some chocolate as a topping.
21. If X is a red wine then X has red as a colour.

The quantifier only in sentence 19 guarantees that all values of the topping
property belong to the meat class. The quantifier some in 20 ensures that there
is at least one value for the topping property that belongs to the chocolate class.
And the value red in 21 specifies a specific value for the colour property.

Cardinality Constraints. There exist three cardinality constraints in CNL (at
least N, at most N and exactly N) which allow for specifying the number of ele-
ments that can occur in the object position of a sentence – as already mentioned
in the discussion of sentence 4.

Property Characteristics in CNL. Properties can be further specified via
a number of property characteristics: properties can be made transitive as in
sentence 22 or symmetric as in sentence 23:

22. If X is located in Y and Y is located in Z then X located in Z.
23. Iff X is adjacent to Y then Y is adjacent to X.

A property can also be specified as the inverse of another property and the
logical meaning of this property characteristic can then be made explicit as
follows using an iff-then construction:

24. Iff X has Y as a topping then Y is a topping of X.

Furthermore, properties can be made functional as in sentence 25 or inverse
functional as in sentence 26:

25. If X has Y as a base and X has Z a base then Y is identical to Z.



Let’s Talk in Description Logic via Controlled Natural Language 9

26. If Y is the base of X and Z is the base of X then Y is identical to Z.

If a property is declared to be functional, then it does not have more than one
value in the object position for a specific instance which occurs in the subject
position. If a property is declared to be inverse functional, then the object of a
property uniquely determines the subject.

Given this information, we can now fully specify the hasTopping property in
CNL which corresponds to the OWL abstract syntax definition in Fig. 3:

27. If X has Y as a topping then X has Y as an ingredient and X is a pizza and
Y is a pizza topping and Y is a topping of X.

28. If Y is a topping of X then X has Y as a topping.

The interesting thing here is that the logical meaning of the inverseOf prop-
erty characteristic is made explicit on the level of the CNL in contrast to the
OWL abstract syntax notation.

5 A Walkthrough Example

The following section illustrates in a walkthrough example how a terminologi-
cal axiom written in CNL can be translated into OWL abstract syntax. Since
the grammar is bi-directional, it can alternatively take an expression in OWL
abstract syntax as input and generate a sentence in CNL as output. To keep
things simple here, we present the grammar in definite clause grammar (DCG)
format [16] and use an attribute-value notation to describe feature structures in
the grammar rules. We do not focus in our discussion on how a slightly modified
version of this grammar can be used by a chart parser to harvest look-ahead
information for the predictive text editor of the CNL.

Sentence 11 (repeated below as 29) is a terminological axiom which defines
the vegetarian pizza class in CNL. This definition uses an iff-then construction
that connects the class to be defined (= definiendum) on the left hand side and
the defining superclass and restrictions (= definiens) on the right hand side:

29. Iff X is a vegetarian pizza then X is a pizza that does not have some meat
as a topping and does not have some fish as a topping.

This sentence is interesting, because it combines a number of different linguis-
tic phenomena which the grammar needs to cover. In particular, this complex
sentence consists of a simple sentence which describes the definiendum and a
complex sentence consisting of a simple sentence and a dependent relative clause
which describe the definiens. The relative clause contains two coordinated verb
phrases which are both negated.

After processing this sentence, the resulting translation should look as follows
in OWL abstract syntax:



10 Rolf Schwitter and Marc Tilbrook

’Class’([vegetarian,pizza],complete,

[[pizza],

complementOf(restriction([has,topping],

someValuesFrom([meat,topping]))),

complementOf(restriction([has,topping],

someValuesFrom([fish,topping])))])

A major problem that we face when we process this terminological axiom is
that we do not know in advance what the form of the content words (for example,
vegetarian pizza) look like. In the TBox mode, we build up the terminology and
define the content words (or identifiers) and in the ABox mode we then use these
content words for making assertions or classifying instances. For this reason, we
distinguish two types of grammar rules: rules which are used in the TBox mode
(tbox) and rules which we are used in the ABox mode (abox).

Below is the top-level grammar rule which processes sentence 29. It basically
splits up the complex sentence into two parts: a sentence with a simple structure
(X is a vegetarian pizza) which describes the definiendum (dfm) and a sentence
with a complex structure (X is a pizza that ...) which describes the definiens
(dfs):

s2( tbox:B, owl:[‘Class’(I1,complete,I2)], tok:[T1|T2] ) -->

[‘Iff’],

s( tbox:dfm, coord:n, owl:[]-I1, tok:[]-T1 ),

[then],

s( tbox:dfs, coord:n, owl:[]-I2, tok:[]-T2 ),

[‘.’].

In this DCG notation, attribute-value pairs represent feature structures and
are written as attribute:value. Variables occur in uppercase and constants in
lowercase. Some attribute take difference lists (for example []-I1 or []-T1) as
values. In general, a difference list uses a pair of lists to represent a list whereas
the first list is the full list and the second list the tail of the first list.

The feature structure owl:[‘Class’(I1,complete,I2)] on the left hand side
of the abovementioned grammar rule is important, since it is the place where
the expression in OWL abstract syntax will be built up for an input sentence
or where an existing expression in OWL abstract syntax can be used to drive
the generation of a sentence in CNL. The predicate ‘Class’(I1,complete,I2)

which builds the scaffolding for a final class definition contains two variables: I1
and I2 which are both instantiated during parsing. They will hold the relevant
information that has been derived from the definiendum and definiens of the
input sentence.

The grammar rule uses an additional feature structure (tok:[]-T1) and tok:[]

-T2 to collect all content words which are part of the definition. Once collected,
these content words are added to the knowledge base and can then be used as
lexical entries in the ABox mode to process assertional statements.

Finally, the feature structure coord:n indicates that both sentences on the
right hand side of the arrow cannot be coordinated on the sentence level.



Let’s Talk in Description Logic via Controlled Natural Language 11

The next grammar rule deals with the definiendum and the definiens and
describes them both as consisting of a noun phrase (X) and a corresponding
verb phrase (is a vegetarian pizza or is a pizza that ...):

s( tbox:B, coord:n, owl:I, tok: T) -->

np( tbox:B, coord:n, func:subj, quant:Q, tok:_ ),

vp( tbox:B, coord:n, func:pred, owl:I, tok:T ).

The feature structure func:subj is used to constrain the form of the noun
phrase in the subject position and the feature structure func:pred is used to
control the form of the verb phrase in the predicate position. Also here, the
feature structure coord:n indicates that both phrases cannot be coordinated on
this level.

In our case, the two noun phrases in subject position consist of a simple
variable and these variables serve as a handle to refer to the same entity, but do
not contribute anything to the final representation:

np( tbox:B, coord:n, func:subj, quant:Q, tok:T ) -->

([‘X’] ; [‘Y’] ; [‘Z’]).

The verb phrases of both sentences consist of a copula (is) which is followed
by an indefinite noun phrase (a vegetarian pizza and a pizza) in the object
position. The following grammar rule describes this structure:

vp( tbox:B, coord:n, func:pred, owl:I, tok:T ) -->

[is],

np( tbox:B, coord:n, func:obj, quant:exist(a), owl:I, tok:T).

Here, the feature structure quant:exist(a) indicates that an existential quan-
tifier is required which can be realised in form of an indefinite determiner. The
noun phrase in object position cannot be coordinated as the feature structure
coord:n shows.

In the case of the definiendum, the noun phrase (a vegetarian pizza) in object
position consists of a determiner (a) and a nominal complex (vegetarian pizza):

np( tbox:dfm, coord:n, func:obj, quant:Q, owl:I, tok:T) -->

det( quant:Q ),

nc( owl:I, tok:T ).

In our case, the nominal complex consists of an adjective (vegetarian) and a
noun (pizza). But the grammar does not distinguish between these word forms
and treats the entire expression as a single concept, since there is no lexical
information available which could help here. The following grammar rules process
the determiner and the nominal complex:

det( quant:exist(a) ) --> ( [a] ; [an] ).

nc( owl:I1-[T2|I1], tok:T1-[T2|T1], L1, L2 ) :-

append([T2],L2,L1).



12 Rolf Schwitter and Marc Tilbrook

nc( owl:I1-[T3,T2|I1], tok:T1-[T3,T2|T1], L1, L2 ) :-

append([T3,T2],L2,L1).

Processing the determiner is straightforward but the nominal complex re-
quires some consideration. Since we do not know what the nominal complex
looks like beforehand, it is a good idea to constrain its length to speed up the
processing. In our example, the grammar rules specify that a nominal complex
can either consist of one token (T2) or two tokens (T3 and T2), but not more.

In the case of the definiens, the noun phrase (a pizza that ...) in object
position consists not only of an indefinite determiner and a nominal complex
but contains an complex relative clause (that does not have ...) which functions
as a modifier:

np( tbox:dfs, coord:n, func:obj, quant:Q, owl:I1-[I3|I2],

tok:T1-[T3|T2]) -->

det( quant:Q ),

nc( owl:[]-I3, tok:[]-T3 ),

rc( tbox:dfs, func:mod, owl:I1-I2, tok:T1-T2 ).

The feature structure func:mod indicates that the remaining part of the noun
phrase is a modifier realised by a relative clause:

rc( tbox:dfs, func:mod, owl:I, tok:T ) -->

[that],

vp( tbox:dfs, coord:_, func:mod, owl:I, tok:T ).

In our example, the relative clause consists of two verb phrases (does not
have some meat ... and does not have some fish ...):

vp( tbox:dfs, coord:y, func:mod, owl:I1-I3, tok:T1-T3 ) -->

vp( tbox:dfs, coord:n, func:mod, owl:I2-I3, tok:T2-T3 ),

[and],

vp( tbox:dfs, coord:_, func:mod, owl:I1-I2, tok:T1-T2 ).

The two feature structures coord:y and coord:n handle the coordination of
the verb phrases and at the same time exclude left recursion.

In our example both verb phrases are negated and make a complex contribu-
tion to the OWL abstract syntax representation as the value of the owl attribute
shows:

vp( tbox:dfs, coord:n, func:mod,

owl:I1-[complementOf(restriction([has|I2],someValuesFrom(I3)))|I1],

tok:T1-[T3|T1] ) -->

[does,not],

[have],

np( tbox:dfs, coord:_, func:mod, quant:exist(some),

owl:I2-I3, tok:T2-T3 ),

pp( tbox:dfs, func:mod, quant:exist(a), owl:[]-I2, tok:[]-T2 ).



Let’s Talk in Description Logic via Controlled Natural Language 13

In particular, the negation (does not) triggers the complementOf constructors
and the verb (have) together with the noun phrase and the prepositional phrase
contribute to the representation of the restriction constructor. It is the deter-
miner (some) of the noun phrase which triggers the someValuesFrom constructor.
The interesting thing here is that the nominal information derived from the
prepositional phrase (topping) needs to be distributed into two different lists
([has,topping] and [meat,topping]) for the final representation.

The following grammar rule deals with the subsequent noun phrases (some
meat and some fish) which are part of the modifying structure and which provide
the meat and fish class information:

np( tbox:dfs, coord:n, func:mod, quant:Q, owl:I, tok:T ) -->

det( quant:Q ),

nc( owl:I, tok:T ).

And finally the next grammar rule deals with the prepositional phrase (as a
topping) which is also part of the modifying structure and which contributes the
topping information to the OWL representation:

pp( tbox:dfs, coord:C, func:mod, quant:Q, owl:I, tok:T ) -->

[as],

np( tbox:dfs, coord:C, func:mod, quant:Q, owl:I, tok:T ).

The rule for the determiner of the modifying noun phrase is straightforward:

det( quant:exist(some) ) --> [some].

and completes our walkthrough example for the terminological axiom.

6 Writing in Controlled Natural Language

The writing of an ontology in CNL is supported by a predictive text editor which
generates lookahead information while a text is written [18]. The text editor can
be used either to express terminological axioms in the TBox mode or to assert
factual information about a specific domain in the ABox mode. The user of the
editor does not need to learn the rules of the CNL explicitly, since the writing
process is completely guided by the editor.

If the user plans to specify a set of terminological axioms in CNL which
describe the intensional aspects of a particular domain, then he or she uses
the TBox mode of the text editor. Once a set of terminological axioms has been
specified, then the resulting terminology can be used in the ABox mode to specify
instance data. From the terminological information available in the ontology, new
lookahead information can be harvested to guide the writing process in the ABox
mode.



14 Rolf Schwitter and Marc Tilbrook

7 Conclusion

In this paper, we argued that those notations which are currently available for
the Web Ontology Language OWL are difficult to write and understand for hu-
mans. Although the N-Triples notation is compact, it does not allow for grouping
of triples. The RDF/XML exchange syntax is a normative notation designed for
machines, but it is not suitable for human consumption. The OWL abstract
syntax is a frame-like notation, but it does not make the meaning of the syntac-
tic constructors explicit enough for novice users. We showed that a controlled
natural language is able to overcome these shortcomings and can serve as a high-
level language for specifying ontologies provided that the user is supported by
an intelligent authoring tool. Ontologies in controlled natural language can be
translated into OWL abstract syntax and vice versa via a bi-directional gram-
mar. The presented approach improves the readability and understandability of
an ontology without compromising its precision and formality.

Acknowledgments

The research reported here is supported by the Australian Research Council, Dis-
covery Project No. DP0449928 and has been partially conducted while the first
author was working as a visiting professor at the Centre Tesnière in Besançon,
France.

References

1. Beckett, E.: RDF/XML Syntax Specification (Revised). W3C Recommendation, 04
February 2004.

2. Berners-Lee, T.: Notation 3. An RDF language for the Semantic, 2001. Available
at: <http://www.w3.org/DesignIssues/Notation3.html>, 2001.

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. In: Scientific Ameri-
can, May 17, 2001.

4. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0 (Third Edition). W3C Recommendation, 04 February
2004.

5. Brickley, D., Guha, R. V.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation, 10 February 2004.

6. Dean, M., Schreiber, G.: OWL Web Ontology Language Reference. W3C Recom-
mendation, 10 February 2004.

7. Fuchs, N. E., Schwertel, U., Schwitter, R.: Attempto Controlled English - Not Just
Another Logic Specification Language. LNCS 1559, Springer, 1999, 1–20.

8. Haarslev, V., Möller, R.: RACER system description. In: Proceedings of the
2nd International Joint Conference on Automated Reasoning (IJCAR), LNAI 2083,
Springer, 2001, 701–705.

9. Horrocks, I., Patel-Schneider, P. F., van Harmelen, F.: From SHIQ and RDF to
OWL: The Making of a Web Ontology Language. In: Journal of Web Semantics 1,
2003, 7–26.



Let’s Talk in Description Logic via Controlled Natural Language 15

10. Huijsen,W. O.: Controlled Language - An Introduction. In: Proceedings of CLAW
1998, Pittsburgh, 1998, 1–15.

11. Kalyanpur, A., Parsia, B., Hendler, J.: A Tool for Working with Web Ontolo-
gies. In: Proceedings of the International Journal on Semantic Web and Information
Systems, Vol. 1, No. 1, 2005.

12. Knublauch, H., Fergerson, R. W., Noy, N. F., Musen, M. A.: The Protege OWL
Plugin: An Open Development Environment for Semantic Web Applications. Third
International Semantic Web Conference - ISWC 2004, Hiroshima, Japan, 2004.

13. Manola, F., Miller, E.: RDF Primer. W3C Recommendation, 10 February 2004.
14. Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R., Musen, M.: Creating

semantic web contents with Protégé-2000. In: IEEE Intelligent Systems, 2001.
15. Patel-Schneider, P. F., Hayes, P., Horrocks, I.: OWL Web Ontology Language

Semantic and Abstract Syntax. W3C Recommendation, 10 February 2004.
16. Pereira, F. C. N., Shieber, S. M.: Prolog and Natural-Language Analysis. CSLI

Lecture Notes, Number 10, 1987.
17. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R.,

Wang, H., Wroe, C.: OWL Pizzas: Practical Experience of Teaching OWL-DL: Com-
mon Errors and Common Patterns. In: Proceedings of the European Conference on
Knowledge Acquisition, Northampton, England, 2004, LNAI 3257, Springer-Verlag,
2004, 63–81.

18. Schwitter, R., Ljungberg, A., Hood, D.: ECOLE - A Look-ahead Editor for a
Controlled Language. In: Proceedings of EAMT-CLAW03, May 15-17, Dublin City
University, 2003, 141–150.

19. Schwitter, R.: A Layered Controlled Natural Language for Knowledge Represen-
tation. In: Machine Translation, Controlled Languages and Specialised Languages,
Special Issue of Linguisticae Investigationes, Vol. 28, No. 1, 2005, 85–106.

20. Smith, M. K., Welty, C., McGuinness, D. L.: OWL Web Ontology Language
Guide. W3C Recommendation, 10 February 2004.

21. Sowa, J. F.: Common Logic Controlled English. Draft, 24 February 2004.
22. Thompson, C.W., Pazandak, P., Tennant, H. R.: Talk to Your Semantic Web. In:

IEEE Internet Computing, Vol. 9, No. 6, 2005, 75–79.


