
12 1094-7167/03/$17.00 © 2003 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

N a t u r a l L a n g u a g e P r o c e s s i n g

ExtrAns:
Extracting Answers
from Technical Texts
Diego Mollá and Rolf Schwitter, Macquarie University

Fabio Rinaldi, James Dowdall, and Michael Hess, University of Zurich

I t’s Friday at 12:20 p.m. in Nagoya, Japan, and Akira Watanabe, pilot of an Airbus pas-

senger jet, is completing the final safety checks before requesting clearance, closing

the doors, and taking off for Sapporo. However, there’s a slight problem:Although the first

officer’s electronic centralized aircraft monitor (ECAM) is working fine, Watanabe’s is

completely blank. Clearly, the Airbus has an electri-
cal problem. Watanabe radios the control tower and
maintenance engineers are dispatched. They must
diagnose the problem quickly, as the passengers are
onboard and getting restless.

The maintenance team’s ultimate knowledge
source is a 15,000-page maintenance manual. Using
a keyword-based information retrieval (IR) system,
the team manually finds related documents to pin-
point the exact answer. However, all this takes time—
and it might be just as fast in this case to open the
avionics compartment and check all 24 frames of the
plane’s electrical system.

System users face such time and resource dilem-
mas daily, the world over. (We based this scenario
on an actual case, changing the pilot’s name and the
flight details.) Fortunately, an emerging technol-
ogy—answer extraction—uses sophisticated lan-
guage technology to analyze documents and user
questions and automatically extract answers accord-
ingly. ExtrAns, an answer extraction system for tech-
nical domains, uses robust natural language pro-
cessing and a semantic representation of the
information’s propositional content. This lets the sys-
tem understand a domain’s technical terminology
and the relation between terms, which is vital for the
answer extraction task. We’ve completed an ExtrAns
prototype and applied it in two domains.

Finding answers: Existing options
Over the past few years, the annual Text Retrieval

Conference has particularly promoted question-
answering and answer extraction research through

its question-answering track.1 In TREC-QA,
researchers test their systems’ ability to retrieve
answers to predefined questions from a sizeable doc-
ument collection.

Most participating systems combine traditional
IR and information extraction techniques with more
sophisticated techniques, ranging from systematic
pattern definitions to parser- and inference-system
integration. So, a typical system uses IR techniques
to preselect the documents or document fragments
most likely to contain the answer. It then uses infor-
mation extraction techniques, such as named-entity
extraction, to select text fragments that contain
strings that have a semantic type compatible with
that of the expected answer. Finally, the system
applies more sophisticated techniques to locate the
smallest strings containing the answer and then ranks
them. Many systems use the World Wide Web and
lexical resources such as WordNet2 to improve the
question answering process.

Importantly, TREC-QA’s competitions have
shown that traditional IR techniques answer ques-
tions inefficiently. For example, when restricted to
an answer with a relatively small amount of text (50
bytes), systems that relied only on IR techniques
fared significantly worse than those that used some
kind of language processing. Such systems account
for both query and document meaning by perform-
ing syntactic and semantic analysis.

The competitions focus on open-domain sys-
tems—that is, systems that can (potentially) answer
any generic question, from “When was Elvis Presley
born?” to “What is the atomic number of the element

The ExtrAns

answer-extraction

system uses logical

forms and lexical

relations for semantic

representation, to

delve into and leverage

the meaning of

sentences, phrases,

and words.

lithium?” Given the competition’s broad-
based definition, participating systems must
use effective, but generic, techniques, so the
systems cannot properly deal with problems
related to domain-specific terminology.

Additionally, TREC-QA competitions are
based on relatively large text collections;
TREC 9 (2000), for example, used 979,000
documents totaling 3,033 Mbytes of data.1

Given this, the competing systems can’t afford
to perform resource-consuming tasks, so they
must use relatively shallow text analysis. Few
systems have attempted more than skimming
the text’s surface. A notable exception is Fal-
con,3 TREC-QA 2000’s best performer. It
completely analyzed the pre-selected text and
each query and created a logical query repre-
sentation. It also used an abductive back-
chaining mechanism, which can provide a
logical proof to justify an answer.

TREC-QA is an important catalyst in
open-domain answer extraction development,
however not all methods developed there are
suitable for technical domains, such as that
of our Airbus example. Systems working in
technical domains can achieve more accurate
results by exploiting a text’s formatting and
style conventions and domain-dependent ter-
minology. Domain-based systems also typi-
cally work with smaller text collections,
allowing more in-depth text analysis. For
example, the SGML-based Airbus A320
maintenance manual is only 120 Mbytes and
much smaller than TREC-QA’s general cor-
pus. So, for users such as our Airbus engi-
neers, a more targeted answer extraction sys-
tem is more effective.

ExtrAns overview
ExtrAns processes document collections

offline and processes users’questions online.
To obtain the semantic representations of the
text sentences and the queries, ExtrAns
applies the same chain of linguistic analysis
modules in both the off- and online stages.

ExtrAns components
Figure 1 shows how ExtrAns’ different

modules interact. The syntactic analyzer and
the semantic interpreter are the two central
linguistic modules. Link Grammar (www.
link.cs.cmu.edu/link), a freely available parser
with a wide-coverage English grammar,
returns the sentence’s syntactic structure as a
set of syntactic dependencies between the
words. After traversing other linguistic mod-
ules for lemmatization, disambiguation, and
anaphora resolution, ExtrAns sends the syn-

tactic structure to a semantic interpreter that
generates the logical forms.

When a user enters a query, ExtrAns con-
verts the question into a logical form, then
uses this form to retrieve a matching answer
in the document knowledge base. Attaching
pointers to the original text in the retrieved
logical forms lets the system identify and
highlight words most relevant to that partic-
ular answer.4 Figures 2a and 2b show exam-
ples of ExtrAns output. When the user clicks
one of the answers, ExtrAns displays the cor-
responding document with the correspond-
ing answer highlighted in context.

Given possible ambiguities, a document
sentence or user question can produce sev-
eral logical forms. ExtrAns stores all these
forms in the document knowledge base and
uses all logical forms of the user’s question
as logical disjunctions to extract the answer.
If several different interpretations of the same
sentence contain the answer, the system
might highlight different words in each inter-
pretation. When this happens, ExtrAns com-
bines all highlightings, using a graded
scheme that indicates which words are used
most often as answers.4 As the screen shots
in Figure 2 show, this makes ambiguities less
obtrusive to users.

Applications
We built our first ExtrAns application to

answer arbitrary user questions from the
online Unix documentation files, or man
pages. The system covers more than 500
unedited pages and answers questions such
as “Which command copies files?” (The sys-
tem is available for online testing at www.
cl.unizh.ch/extrans.)

More recently, we used ExtrAns to cover
the Airbus A320’s Aircraft Maintenance
Manual (AMM; see www.cl.unizh.ch/webex-
trans). The domain’s highly technical nature,
its use of an SGML-based format, and the
manual’s size—120 Mbytes compared with
the 270-Kbyte Unix documentation in the
first application—provide an important test-
bed for our system’s scalability and domain
independence. Assuming the manual has the
answer, the system can quickly and efficiently
answer questions such as “Where is the
ECAM electrical contactor located?”

Content analysis in ExtrAns
To leverage a text’s meaning and thereby

extract the best answers, ExtrAns must find
the most appropriate way to express a sen-
tence’s semantic and logical contents. To
accomplish this, we paid special attention to
the implementation of simple inferences, the
development of a flat notation for logical
forms, and the treatment of terminology.

Inferences
Extracting answers sometimes requires

that a system make inferences. To avoid
unnecessary online computational over-
head, ExtrAns makes all inferences that do
not require user queries offline and stores
the inference results as additional infor-
mation in the semantic representation. This
results in a larger data store, but we found
that it was more efficient to use database
systems to store and access the informa-
tion than to try to speed up the inference
mechanism.

Currently, ExtrAns makes only a limited
set of inferences. One such inference is dis-

JULY/AUGUST 2003 computer.org/intelligent 13

Document
semantic

representation

 Question
 semantic
representation

 Answer
extraction

Answer

Question

Documents

Linguistic
modules

Figure 1. Architecture of the ExtrAns system. The syntactic analyzer and semantic
interpreter modules process the documents’ linguistic information (offline) and the
questions (online).

tributivity of conjunction. For example, if the
sentence says “The static inverter is activated
and a beep sounds,” ExtrAns’ inference
engine adds two additional pieces of infor-
mation to the logical form, corresponding to
the propositional contents of “the static
inverter is activated” and “a beep sounds.”

Another particularly useful type of infer-
ence is synonymy. Based on WordNet, we
created a small thesaurus and defined syn-
onym identifiers for all of the thesaurus’s
synonym sets (synsets). The inference engine
replaces all thesaurus-defined words in the
final, logical form of the query sentence with
their synset identifiers. To simplify the sys-
tem, we handle ambiguity in word sense triv-

ially: If a word belongs to two or more
synsets, the algorithm randomly chooses one
synset. Because the words within a technical
domain have limited ambiguity, word sense
errors have minimal impact.

If ExtrAns can’t find a direct answer to the
user’s question, it can relax the logical
restrictions in a stepwise manner. ExtrAns
first considers hyponyms—words that belong
to semantic classes that are subsets of the
original words. ExtrAns then adds the
hyponyms’ synsets as disjunctions in the
question’s logical form. Technically speak-
ing, the resulting logical form is equivalent to
the original logical form. In practice, the
answer extraction module’s default is to not

explore hyponymy relations, so the hyponymy
stage might find additional answers to the
question.

In the synonym and hyponym stages,
ExtrAns finds only logically correct proofs
(within the semantic representation’s expres-
sive limits), making it a highly precise
answer extraction system. If the hyponym
stage fails, however, ExtrAns goes on to
attempt approximate matching and returns
the sentences with the highest semantic con-
tent overlap. If this method fails, the system
attempts keyword matching, in which it aban-
dons syntactic criteria and uses only infor-
mation about word classes. This final step
resembles a traditional passage retrieval that
is enhanced with parts-of-speech tags.

Flat notation
Our focus on ExtrAns’ logical content

analysis of technical text led us to develop a
methodology for creating and using logical
forms. Our goal was to create a formalism
that’s easy to build and use, yet expressive
enough for the task at hand. We also wanted
a formalism that could cope with problem-
atic sentences, including ones that were long,
had spelling mistakes, or were structurally
unrecognizable to the syntactic analyzer. To
meet our goals, ExtrAns’ logical forms use a
flat notation and reification (the “Creating
the Flat Logical Forms” sidebar offers fur-
ther details). Take, for example, two simple
sentences. First, “The ECAM contactor is
located in the left frame,” which is logically
expressed as

holds(e4),
object(‘ecam_contactor’, o2, [x2]),
evt(locate, e4, [x4, x2]),
object(anonymous_object, o4, [x4]),
object(frame, o7, [x7]),
prop(left, p2, [x7]),
prop(in, p5, [e4, x7]).

Next, “The static inverter is activated if the
CSM/G is unavailable,” which is logically
expressed as

if(e5, p10),
prop(static, p2, [x3]),
object(inverter, o3, [x3]),
evt(activate, e5, [x5, x3]),
object(anonymous_object, o5, [x5]),
object(‘csm/g’, o8, [x8]),
prop(unavailable, p10, [x8]).

The first sentence’s logical form says that,

14 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

N a t u r a l L a n g u a g e P r o c e s s i n g

(a)

Figure 2. Example ExtrAns output: (a) Results from a user query. Answers are high-
lighted in colors according to pertinence. (b) When the user clicks on an answer (green
highlighting) in (a), ExtrAns opens the document window.

(b)

in the AMM’s universe, there is an ECAM
contactor (x2) and a frame (x7), a property (p2)
that the frame (x7) is on the left, and the event
(e4) of something locating x2 in x7. Because
the sentence does not say who or what locates
the contactor, ExtrAns’ semantic interpreter
uses a dummy anonymous object. The second
sentence’s logical form expresses the condi-
tional existence of the event of something acti-
vating the static inverter (e5) if the property of
the CSM/G (x8) is unavailable (p10).

We kept these examples deliberately sim-
ple to illustrate the notation; any given docu-
mentation page surely contains more complex
sentences, possibly with multiple inter-
pretations. Figure 3 shows an example of a
more complex sentence and one of its inter-
pretations. ExtrAns tried to classify all words
in the text fragments that were too difficult
for the parsing system as nouns, verbs, adjec-
tives, or adverbs (marked in boldface in Fig-
ure 3). The words tagged as keywords

resisted ExtrAns’ classification attempts.
ExtrAns’ flat logical forms do not attempt

to express a sentence’s complete semantic
information. For example, they discard infor-
mation carried by modal verbs, tense and
aspect, plural forms, and quantifiers. This is

why we call them minimal logical forms. For
ExtrAns, the only truly important informa-
tion is the set of semantic relations among
open words (nouns, verbs, adjectives, and
adverbs) and prepositions.

Using minimal logical forms facilitates

JULY/AUGUST 2003 computer.org/intelligent 15

Figure 3. Example of a flat logical form from the Aircraft Maintenance Manual
sentence “In normal flight configuration, each IDG supplies its own distribution
network via its Line Contactor (GLC).” All unknown words are marked in boldface.

holds(a1), prop(in, p1, [a1, x4]),
object(configuration, a2, [x4, x3, a5]), evt(configure, x4, [x3, a5]),
object(flight, a3, [x3]), explication(x4, x6), object(each, a4, [x6]),
prop(normal, p2, [x4]), evt(supply, e8, _), object(idg, a6, [x7]),
object(network, a7, [x12]), compound_noun(x11, x12),
object(distribution, a8, [x11, a9, a10]),
evt(distribute, x11, [a9, a10]), prop(via, p12, [x12, x16]),
object(‘Contactor’, a11, [x6]), explication(x16, x18),
object(glc, a12, [x18]), prop(own, p10, _), keyw(‘Line’).

Typically, logical forms contain embedded expressions. We
decided to use a flat notation to facilitate the derivation of
partial logical forms from complex (or even ungrammatical)
sentences and to enable their quick processing to find the
answer to the user question. ExtrAns’ semantic interpreter
uses reification to build the flat logical forms.

Flattening nested expressions
Using additional arguments to flatten out a nested struc-

ture is a well-known approach. The technique is commonly
used in programming when a particular programming lan-
guage lacks user-defined functions that return values. In
such cases, we would resort to subroutines that return the
values through extra arguments. For example, instruction 1
can be substituted by sequence 2:

1. A := (factorial(25) – exp(12)) * 2;
2. factorial(X, 25);

exp(Y, 12);
A := (X – Y) * 2;

We can use additional arguments, X and Y, to store the results
of factorial and exp, respectively. Similarly, we can flatten out
the logical expression, “John ate an apple quickly,” by intro-
ducing new arguments. So, we can flatten out 1 as 2:

1. ∃a(quick(eat(j, a)) ^ apple(a))
2. ∃a, e1(eat(e1, j, a) ^ quick(e1) ^ apple(a))

We use the new logical variable e1 as a handle to refer to
the modifiable event so that we can say that the eating event
is quick (quick(e1)).

Reification
Reification is the technical term for introducing new entities

that refer to abstract concepts. A classical example of reifica-

tion is Davidson’s introduction of entities representing events.1

Nothing stops us from reifying every possible element in a log-
ical form, giving way to Hobb’s ontological promiscuity.2 For
answer extraction, we’ve found it more practical to reify only
objects, events, and properties:

• Objects. A noun such as contactor introduces the predicate
object(contactor, o1, [x1]), meaning “o1 is the concept that the
object x1 is a contactor.” We can use the new entity o1 in
constructions with adjectives intentionally modifying nouns
or in expressions of identity.

• Events. A verb such as installs introduces evt(install, e1, [x1, x2]),
meaning “e1 is the concept that x1 installs x2.” x1 and x2 repre-
sent the objects introduced by the verb arguments. We use
event reification to modify events through adverbial and
prepositional phrases.

• Properties. Adjectives and adverbs introduce properties.
For example, an adjective such as blue introduces the
predicate prop(blue, p1, [x1]), meaning “p1 is the concept that
x1 is blue.” Property reification is useful when we want to
modify an adjective, as in the sentence “The house is
pale blue.”

References

1. D. Davidson, “The Logical Form of Action Sentences,” The Logic
of Decision and Action, N. Rescher, ed., Univ. Pittsburgh Press,
1967, pp. 81–120.

2. J.R. Hobbs, “Ontological Promiscuity,” Proc. 1985 Ann. Meeting
Assoc. Computational Linguistics (ACL), Univ. of Chicago ACL,
1985, pp. 61–69.

Creating the Flat Logical Forms

finding answers to questions because it uses
the question’s logical form to generate the
partial information that the answer requires.
For example, the question “Where is the
ECAM contactor located?” produces:

object(‘ecam_contactor’, O1, Y), evt(locate, E2, [X, Y])

In our example, the answer’s logical form
does not have the holds predicate and does not
express the anonymous object. ExtrAns uses
unification to determine the overlap between
two logical forms. Sentences containing
terms that overlap are good candidates for
the answer if they have compatible variables.
So, the sentence “The ECAM contactor is
located in the left frame” is a possible answer
if the question’s O1 variable (all variables are
represented in uppercase) corresponds to the
answer’s o2 constant; the question’s X vari-
able corresponds to the answer’s x4 constant;
and so on. In other words, if we compare
ExtrAns with a “bag of words” approach
(such as those used in IR systems), the
“words” correspond to semantic primitives
and include links to other “words.” We can
thus view the ExtrAns answer procedure as
a “bag of semantic relations” in which we
account for the semantic relations between
the sentence words.

As another example, given the question,
“What activates the static inverter?” we
might consider the sentence “The static
inverter is activated if the CSM/G is unavail-
able” as a possible answer. However, this
sentence is not a logical answer to the ques-
tion because the clause “The static inverter
is activated” is the consequent of a condi-
tional. Although ExtrAns has no way of
knowing whether the CSM/G is available or
not, the user might know. So, ExtrAns sends
the sentence to the user, letting him or her
quickly determine if the sentence answers the
question.

This mechanism can easily return accept-
able answers to wh-questions (such as
“What’s located in the left frame?”), yes–no-
questions (such as “Is the ECAM contactor
located in the left frame?”), and some how-
questions (such as “How is the static inverter
activated?”). We are exploring mechanisms
to successfully answer other question types;
our focus is on integrating information
extraction techniques, such as those used in
systems competing in TREC-QA.

ExtrAns’semantic interpreter can produce
flat logical forms with minimal domain
knowledge and the administrator can easily

port the system to different domains. The
domain’s only true impact is during the pre-
processing stage of the input text and during
the creation of the lexical ontology that
reflects the domain’s specific terms, mean-
ings, and lexical relations.

Terminology
To produce a syntactic representation of

each sentence, the system must identify
terms, such as “electrical centralized aircraft
monitor” or “electrical connector,” as phrasal
units. In the term “avionics compartment,”
for example, only “compartment” interacts
with other sentence words, and the parser
should effectively ignore “avionics.” Other-
wise, the system could plausibly combine
“avionics” with the wrong sentence words—
producing multiple possibilities without
choosing the correct parse—or waste effort
assigning a structure to the term itself.

The internal syntactic structure of techni-
cal terms is notoriously idiosyncratic and
resists standard parsing techniques. In our
Airbus domain, a technician might ask,
“Where is the electronic centralized aircraft
monitor?” If standardization were possible,
the answer would use the same term. In real-
ity, the answer might describe the location of
the “centralized aircraft monitor,” the “elec-
tronic centralized aircraft monitor,” or even
the “ECAM.” So, essentially, a term’s inter-
nal structure is indeterminable, although the
term as a whole interacts in the sentence the
same as an ordinary word.

To process answers efficiently, the system
must preprocess the document collection to
determine which terms appear in the domain
and how these terms relate to each other.
Unfortunately, although terminology extrac-
tion methods have matured, the process still
resists full automation.5 In ExtrAns we cre-
ated an extended list of term candidates using
statistical measures and methods to filter out
uninteresting words.

To determine which form of a term the
answer might use, we organized the extracted
term list into a WordNet-like hierarchy of
subtypes. This allows ExtrAns to determine
which terms are specific types of other terms
and how a domain’s individual concepts are
gathered into synsets.

Because technical terminology typically
constructs more specific terms by adding
words to generic terms, ExtrAns can auto-
matically determine subtype relations across
the term using a simple algorithm. This can
easily determine, for example, that the “elec-

tronic centralized aircraft monitor” is a sub-
type of “aircraft monitor” and that “First Offi-
cer seat” is a subtype of “seat.”

Finding synonymous terms requires more
complex processing. To this end, we use the
FASTR6 terminology extraction tool during
the document processing stage.5 Using
FASTR, we can gather the synonymous terms
into synsets then place them in a hierarchy
according to subtype relation. ExtrAns ex-
ploits this terminological thesaurus in subse-
quent processing stages.

Using rewrite rules combined with a mor-
phological database and the hierarchy of sub-
types lets ExtrAns identify linguistic varia-
tions between two terms. It can detect

• simple head inversion (“generator control
unit” is a variant of “control unit for the
generator”)

• morphological variations (“electric con-
tactor” is a variant of “electrical contactor”)

• complex morphosyntactic variations (“elec-
trical generation equipment” is a variant of
“equipment for generating electricity”)

By exploiting the synsets, ExtrAns can also
detect weaker synonymy relations:

• synonymous heads (“electrical fault” and
“electrical defect”)

• synonymous modifiers (“upright position”
and “vertical position”)

• a combination of heads and modifiers
(“functional test” and “operational check”)

Once the candidate terms have been pro-
duced automatically, a human domain expert
determines which terms on the list are actu-
ally relevant. This is time well spent: A con-
cise and accurate domain terminology is vital
if we want the system to achieve any level of
content understanding. Once we’ve identi-
fied terms, we can improve efficiency by giv-
ing multiword terms the same status as ordi-
nary words during syntactic analysis. In our
experience, this improves parser efficiency
by a significant amount (46 percent in our
experiments).

Performance
To evaluate ExtrAns results, we compared

it with Smart, a traditional IR system.7 As a
measure, we used TREC-QA’s mean recip-
rocal rank,1 which ranks results according to
the placement of the first correct answer in
the system’s output list. A system’s MRR is
the mean of the rank reciprocals for all

16 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

N a t u r a l L a n g u a g e P r o c e s s i n g

answers in a given set. Our evaluation
domain was the AMM. We constructed 100
questions on the basis of a set of known
answers in the document collection.

Although Smart found more answers than
ExtrAns, most of the answers ExtrAns did
find were in first position. Furthermore, in
some cases ExtrAns found more than one
valid answer for the same question (some-
times in the same document). ExtrAns’over-
all MRR was 0.63; Smart’s was 0.46. As
expected, ExtrAns provided far higher pre-
cision than the generic IR system, at the price
of smaller recall.8

Answer extraction technology is now
taking off. Our work on ExtrAns

shows the advantages of focusing on a spe-
cific technical domain and using relatively
small data sets to implement a highly precise
answer extraction system. Several decisive
factors contribute to ExtrAns’ success:

• It explicitly handles domain-specific
terminology.

• It integrates a full parser and a robust
semantic interpreter that can handle com-
plex, ungrammatical sentences.

• It uses a flat logical notation that encodes
the minimal semantic information required
for the current task.

• It integrates display techniques that help
the user find the answer in context.

ExtrAns and other answer extraction sys-
tems work for many applications that require
quick and precise answers from technical
texts, including online help systems for soft-
ware documentation, support systems for call
centers in large organizations, Internet-based
public-inquiry systems, and technical support
systems. Because users can install ExtrAns on
a laptop or tablet PC, they can use it onsite—
and so our maintenance engineer could
quickly locate and fix that faulty electrical
contactor, letting the Airbus flight to Sapporo
take off without significant delay.

References

1. E.M. Voorhees, “The TREC Question An-
swering Track,” Natural Language Eng., vol.
7, no. 4, 2001, pp. 361–378.

2. C. Fellbaum, ed., WordNet: An Electronic
Lexical Database, MIT Press, 1998.

3. S. Harabagiu et al., “Falcon: Boosting Knowl-

edge for Answer Engines,” Proc. 9th Text
Retrieval Conf. (TREC-9), Nat’l Inst. Science
and Technology, 2000, pp. 479–488.

4. D. Mollá et al., “ExtrAns, An Answer Extrac-
tion System,” Traitement Automatique des
Langues, vol. 41, no. 2, 2000, pp. 495–522.

5. J. Dowdall et al., “Technical Terminology as
a Critical Resource,” Proc. Int’l Conf. Lan-
guage Resources and Evaluations (LREC-
2002), Euro. Language Resource Assoc.,
2002, pp. 1897–1903.

6. C. Jacquemin, Spotting and Discovering
Terms through Natural Language Processing,
MIT Press, 2001.

7. G. Salton, Automatic Text Processing: The
Transformation, Analysis, and Retrieval of
Information by Computer, Addison-Wesley,
1989.

8. F. Rinaldi et al., “Towards Answer Extraction:
An Application to Technical Domains,” Proc.
15th Euro. Conf. Artificial Intelligence (ECAI
2002), IOS Press, 2002, pp. 460–464.

JULY/AUGUST 2003 computer.org/intelligent 17

T h e A u t h o r s
Diego Mollá is a lecturer in the Centre for Language Technology at Mac-
quarie University in Sydney, Australia. His research focuses on bridging the
gap between theoretical linguistics, especially semantics and logical forms,
and practical natural language processing applications. His projects center
around AnswerFinder, a question-answering system. He received an MSc in
speech and language processing and PhD in the formal semantics of aspec-
tual composition from the University of Edinburgh. He is currently secretary
of the Australasian Language Technology Association. Contact him at the
Division of Information and Communication Sciences, Macquarie Univ.,

New South Wales 2109, Australia; diego@ics.mq.edu.au; www.ics.mq.edu.au/~diego.

Fabio Rinaldi is a researcher at the University of Zurich’s Institute of Com-
putational Linguistics. His research interests include ontologies, information
extraction, answer extraction, and terminology. He received an MSc in com-
puter science from the University of Udine, Italy, and worked in various Euro-
pean centers (including ITC/IRST in Trento, Italy, and UMIST in Manches-
ter, UK). He is a member of the Association for Computational Linguistics.
Contact him at the Inst. of Computational Linguistics, Univ. of Zurich, Win-
terthurerstr. 190, CH-8057 Zurich, Switzerland; rinaldi@cl.unizh.ch; www.
cl.unizh.ch/rinaldi.

Rolf Schwitter is a lecturer in the Centre for Language Technology at Mac-
quarie University in Sydney, Australia. His research interests include answer
extraction, controlled natural languages, and logic programming. He received
a PhD in computational linguistics from the University of Zurich. Contact
him at Macquarie Univ., Dept. of Computing, Ctr. for Language Technology,
NSW, 2109 Australia; schwitt@ics.mq.edu.au; www.ics.mq.edu.au/~rolfs.

James Dowdall is a doctoral student and research assistant at the University
of Zurich’s Institute of Computational Linguistics. His research interests
include terminology extraction, automated thesaurus construction, and effi-
cient strategies for exploiting multiword terminology in natural language pro-
cessing. He has an MPhil in theoretical linguistics from Trinity College,
Dublin. Contact him at the Inst. of Computational Linguistics, Univ. of Zurich,
Winterthurerstr. 190, CH-8057 Zurich, Switzerland; dowdall@cl.unizh.ch;
www.cl.unizh.ch/dowdall.

Michael Hess is a professor of computational linguistics at the University of
Zurich. His research interests include text-based intelligent systems (in par-
ticular, answer extraction and question answering), computational seman-
tics, text mining, and using linguistic methods in Web-based teaching. He
received a PhD in Russian linguistics and modern history from the Univer-
sity of Zurich. Contact him at the Inst. of Computational Linguistics, Univ.
of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland; hess@cl.
unizh.ch; www.cl.unizh.ch/hess.

