
PROC. WLP 95, 11TH LOGIC PROGRAMMING WORKSHOP, VIENNA, SEPTEMBER 1995

Attempto
Specifications in Controlled Natural

Language
Norbert E. Fuchs, Bernhard Hamberger, Rolf Schwitter
Department of Computer Science, University of Zurich

{fuchs, hambe, schwitter}@ifi.unizh.ch

Writing specifications for computer programs is not easy since one has to take into account the disparate
conceptual worlds of the application domain and of software development. To bridge this conceptual gap we
propose controlled natural language as a declarative and application-specific specification language.
Controlled natural language is a subset of natural language that can be accurately and efficiently processed by
a computer, but is expressive enough to allow natural usage by non-specialists. Specifications in controlled
natural language are automatically translated into Prolog clauses, hence become formal and executable. The
translation uses a definite clause grammar (DCG) enhanced by feature structures. Inter-text references of the
specification, e.g. anaphora, are resolved with the help of discourse representation theory (DRT). The
generated Prolog clauses are added to a knowledge base. We have implemented the prototypical specification
system Attempto that successfully processes the specification of a simple automated teller machine.

1 Introduction: Views as Declarative Specifications
We develop formal specifications in logic languages, specifically first-order predicate
logic and Prolog. To bridge the conceptual gap between application domains and formal
specifications we introduce graphical and textual views of formal specifications as
application-oriented, i.e. in the true sense declarative, specifications [Fuchs & Fromherz
94].

Formal
Specification

Textual View

Graphical View

An automatic mapping between a view and its associated formal specification assigns a
formal semantics to the view. Though views give the impression of being informal and
having no intrinsic meaning, they are formal and have the semantics of their associated
formal specification. This dual-faced appearance of views reduces the conceptual gap.
If the formal specification is executable the execution can be observed on the level of the
view. Thus validation and prototyping in concepts close to the application domain
become possible.
The rest of this paper is structured as follows: in section 2 we introduce controlled natural
language as a view of a formal specification in a logic language; in section 3 we give an
overview of the Attempto specification system; sections 4 - 7 describe the translation
process from controlled English to Prolog; section 8 is dedicated to the lexical editor and
the spelling checker; finally, in section 9 we conclude and outline further research.

2

2 Controlled Natural Language
Controlled natural language – a subset of natural language with restricted grammar and
an application-specific vocabulary – can serve as a view for a formal specification in a
logic language.
A specification in controlled natural language is a multi-sentential text consisting of
• simple declarative sentences of the form subject – verb – object
• if ... then sentences
• yes/no queries, wh-queries
The specification text can contain
• anaphoric references, e.g. pronouns
• relative clauses, both subject and object modifying
• comparative clauses like bigger than, smaller than and equal to
• elliptical compound phrases like and-lists, or-lists
• negation like does not, is not and has not
Constructs like anaphora, ellipsis, and abbreviations have been introduced to make the
controlled language compact, concise and close to unrestricted natural language.
Controlled or simplified English is not a new idea. It has been used for quite some time
for technical documentation [AECMA 89, Wojcik et al. 90, Adriaens & Schreurs 92], and as
data base query language [Androutsopoulos 95]. Pulman and Rayner are suggesting a
computer processable controlled language that could be used for various purposes
ranging from structured documentation over access to information to the control of
devices [Pulman & Rayner 94]. However, very few researchers have tried to employ
controlled natural language for software specifications since this leads to additional
syntactic and semantic constraints for the language especially if one requires the
specifications to be executable [Ishihara et al. 92, Macias & Pulman 92, Pulman 94, Fuchs
& Schwitter 95].
Users seem to be able to construct sentences in controlled natural language, and to avoid
constructions that fall outside the bounds of the language, particularly when the system
gives feedback of the analysed sentences in a paraphrased form using the same controlled
language [Capindale & Crawford 89].

The following is a small excerpt of the controlled natural language specification of a
simple automated teller machine called SimpleMat.

% Example Specification
The customer enters a card and a personal code that is a number.
If the personal code is not valid then SM rejects the card.

The example specification text employs
• declarative and if-then sentences
• ellipsis
• compound nouns, e.g. personal code
• relative clauses
• anaphoric reference by indefinite and definite determiners (a card - the card)
• negation
• abbreviations (SM standing for SimpleMat)

3

3 Overview of Attempto
We have implemented the Attempto system that accepts specifications in controlled
natural language and translates them into Prolog.
The user enters specification text in controlled natural language that the Dialog Component
forwards to the parser in tokenised form. Parsing errors and ambiguities to be resolved by
the user are reported back by the dialog component. The user can also query the
knowledge base in controlled natural language.
The Parser uses a predefined definite clause grammar enhanced by feature structures and
a predefined linguistic lexicon to check sentences for syntactical correctness, and to
generate syntax trees and sets of nested discourse representation structures.

Text

Dialog
Component

Linguistic
Lexicon

Knowledge
Base

Parser

Discourse
Handler

Translator
to Prolog

Knowledge
Assimilator

Answer
Generator

Inference
Engine

The Linguistic Lexicon contains an application-specific vocabulary. The lexicon can be
modified by a lexical editor invokable from the dialog component.
The Discourse Handler analyses and resolves inter-text references and updates the
discourse representation structures generated by the parser.
The Translator translates discourse representation structures into Prolog clauses. These
Prolog clauses are either passed to the knowledge assimilator, or – in case of queries – to
the inference engine.
The Knowledge Assimilator adds new knowledge to the knowledge base.
The Inference Engine answers user queries with the help of the knowledge base. In a
preliminary version the inference engine is just the Prolog interpreter.
The Answer Generator takes the answers of the inference engine, reformulates them in
controlled natural language, and forwards them to the dialog component.

4

4 Parsing
The specification text is parsed by a top-down parser using a Definite Clause Grammar
enhanced by feature structures [Covington 94].
The parser generates a syntax tree as syntactic representation, and concurrently a
discourse representation structure as semantic representation.
The syntax tree for a multisentential specification text has the root discourse to which
s-nodes for sentences are attached.
The following graph shows the s-node of the second sentence of the above example
specification.

 s
 |--------------------|--------------------|
 s1 s1
 |--------|--------| |------|------|
 cj s cj s
 | |-----------|-----------| | |-------|-------|
 | np vp | np vp
 | |-|--| |-----|-|----| | | |----|-----|
 | det n1 copula neg ap | pn tv np
 | | | | | | | | | |-|--|
 | | nn | | a | | | det n1
 | | | | | | | | | | |
 | | | | | | | | | | cn
 | | | | | | | | | | |
 if the personal_code is not valid then simplemat rejects the
card.

The parser generates the following paraphrase – displaying all substitutions and
interpretations made – that explains how Attempto interpreted the user's input.

% Example Specification
the customer enters a card and the customer [same object] enters
[same predicator] a personal_code that is a number.
if the personal_code [same object] is not valid then sm
[simplemat] rejects the card [same object].

The user can now decide to accept Attempto 's interpretation, or to rephrase the input to
achieve another interpretation. For ambiguous input Attempto always suggest one
standard interpretation as default. It is up to the user to reformulate the input to achieve
non-standard interpretations.
In addition, the parser informs the user about spelling and parsing errors, e.g. if the user
had entered

The customer enters a card. It is checked for validity.

After parsing the first sentence successfully the system finds an unknown word in the
second sentence that makes the sentence unparsable, and replies

First Unparsable Sentence: it is checked for validity.
Unknown word: checked

With the help of a lexical editor the user can immediately add the unknown word to the
lexicon and resubmit the input to the parser.

5

5 Contextual Semantic Translation
The specification text is translated into a discourse representation structure (DRS) which
contains discourse referents representing the objects of the discourse, and conditions for
these discourse referents [Covington et al. 88, Kamp & Reyle 93].
The first sentence of our example contributes the discourse referents A, B, C and D and the
conditions

 [A, B, C, D]
 gender(A, masc)
 customer(A)
 gender(B, neut)
 card(B)
 enter(A, B)
 gender(C, neut)
 personal_code(C)
 gender(D, neut)
 number(D)
 be(C, D)
 enter(A, C)

The second sentence is analysed in the context of the first sentence thus making the
resolution of references, e.g. anaphora, possible. This sentence contributes further
discourse referents E, F and G.

 [E]
 gender(E, neut)
 named(E, simplemat)
 IF:
 [F]
 gender(F, neut)
 the(personal_code(F))
 F=C
 NOT:
 []
 valid(F)
 THEN:
 [G]
 gender(G, neut)
 the(card(G))
 G=B
 reject(E, G)

Conditions can be simple – e.g. customer(A) – or complex, i.e. DRSs. This can lead to
nested DRSs. In our case, the topmost DRS contains an IF-THEN sub-DRS which itself
contains a NOT sub-DRS.
Note that discourse referents and conditions for proper names, e.g. named(E,
simplemat) appear always in the topmost DRS.
Anaphoric references, e.g. the phrase the card of the second sentence referring to the
phrase a card of the first sentence, are represented as the conjunctive condition
the(card(G)) and G=B. References are only possible to discourse referents in super-
ordinate DRSs. The resolution algorithm always picks the closest referent that agrees in
gender and number.

6

6 Semantic Representation
Now the DRSs can be combined and simplified yielding the final semantic representation
of the complete specification text as one (nested) DRS

 [A, B, C, E]
 customer(A)
 card(B)
 enter(A, B)
 personal_code(C)
 number(C)
 enter(A, C)
 named(E, simplemat)
 IF:
 []
 NOT:
 []
 valid(C)
 THEN:
 []
 reject(E, B)

The gender information that was only necessary for anaphoric resolution is eliminated,
and all unifications including be(C, D) are performed.

7 Translation into Prolog
Finally, the discourse representation structure is translated into Prolog clauses which are
asserted as fact/1 to the knowledge base.

 fact(customer(0)).
 fact(card(1)).
 fact(enter(0, 1)).
 fact(personal_code(2)).
 fact(number(2)).
 fact(enter(0, 2)).
 fact(named(3, simplemat)).
 fact((reject(3, 1):-neg(valid(2)))).

Discourse referents – being existentially quantified variables – are replaced by Skolem
constants 0, 1, ..., or – if they are in the scope of a universal quantor – by Skolem
functions.
IF-THEN DRSs with disjunctive consequences cannot directly be translated into Prolog
since they would lead to disjunctive clauses. Instead they are represented by sets of
Prolog clauses, one clause for each disjunct.
Questions (yes/no and wh-queries) can be used to interrogate the contents of the
knowledge base. Questions are translated first into QUERY DRSs and then into Prolog
queries, and are answered by logical inference.

7

8 Lexical Editor and Spelling Checker
Specification texts are incrementally developed by domain specialists. Though Attempto's
lexicon contains entries of the closed word classes, e.g. determiners and prepositions, the
entries for domain specific subsets of the open word classes, e.g. nouns and verbs, have to
be added incrementally as needed for the specification text. A lexical editor – exhibiting
interfaces for linguistic experts and non-experts – allows users to interactively modify and
extend the lexicon while the system parses the specification text.
The expert interface represents lexical entries as complete feature structures and allows
experts to freely modify any lexical entry. The interface for non-experts employs
templates that help users to enter a minimum of information. The rest of the information
is automatically derived. Help texts and balloon help support both groups of users.
The following screen shots show how a non-expert would add the transitive verb check
to the lexicon. Not all fields need to be filled out. The translation into the predicate
check/2 is automatically derived.

A spelling checker allows users to determine whether all words of a specification text are
in the lexicon. This spelling checker is invoked automatically if (part of) a specification
text cannot be parsed.

8

9 Conclusions and Further Research
The present prototypical implementation of Attempto proves that controlled natural
language can be used for the non-trivial specification of an automated teller machine, and
that the specification can be translated as coherent text into Prolog clauses. Much more
work needs to be done, however.
Controlled Natural Language
Our current version of controlled English was derived in an attempt to represent typical
constructs in natural language specifications in a structured and concise way. It seems
that other researchers have chosen similar ad hoc approaches to define their versions of
controlled or restricted natural languages. However, a more systematic definition of
controlled English has to be found that not only results in a highly expressive language,
but also makes it easier to learn and remember it.
Retranslation
To hide the internal representation of a formal specification it must be retranslated into
controlled natural language when the user wants to examine or query the knowledge
base. Formal specifications in the form of a DRS can – at least partially – be retranslated
into their equivalent controlled natural language text since the grammar of the Attempto
system is reversible. Another approach would use predefined translation schemata that
access the lexicon to fill in variable parts of the schemata.
Executing the Specification
The internal representation of a specification can be used for simulation or prototyping by
executing it. In our example specification, this means executing/running the specification
of the automated teller machine. As it stands the specification does not provide all the
necessary information and needs to be enhanced in three ways.
• First, an order of events has to be established, e.g. we have to make sure that during

the simulation the event of entering a card has to precede the event of checking it.
[Ishihara et al. 92] who translate natural language specifications into algebraic ones
use contextual dependency and properties of data types to establish the correct order
of events. In our approach based on discourse representation theory the order of
events is to a great extent established when we introduce eventualities (events and
states) into the processing of our controlled natural language.

• Second, many relations representing events are not only truth-functional, but also
cause side-effects, e.g. I/O operations. The required side-effects can be defined by
interface predicates that depend on the simulation environment. One could, for
example, envisage that the interface predicates do not simply simulate the automated
teller machine but cause the execution of a real automated teller machine.

• Third, the execution needs some situation specific information, or scaffolding. We can
either provide the relevant facts in the knowledge base, or more conveniently, get the
information by querying the user.

10 Acknowledgements
We would like to thank the anonymous referees for their helpful comments on an earlier
version of this paper.

9

11 References
[Adriaens & Schreurs 92] G. Adriaens, D. Schreurs, From Cogram to Alcogram:

Towards a Controlled English Grammar Checker,
Proceedings COLING 92, pp. 595-601, 1992

[AECMA 89] Association Européenne des Constructeur de Matériel
Aéronautique, AECMA – A Guide for the Preparation of
Aircraft Maintenance Documentation in the International
Aerospace Maintenance Language, 1989.

[Androutsopoulos 95] I. Androutsopoulos, G. D. Ritchie, P. Thanisch, Natural
Language Interfaces to Databases – An Introduction,
Journal of Natural Language Engineering, Cambridge
University Press (to appear)

[Capindale & Crawford 89] R. A. Capindale, R. G. Crawford, Using a natural language
interface with casual users, International Journal Man-Machine
Studies, 32, pp. 341-362, 1989

[Covington 94] M. A. Covington, GULP 3.1: An Extension of Prolog for
Unification-Based Grammar, Report AI-1994-06, Artificial
Intelligence Center, University of Georgia, 1994

[Covington et al. 88] M. A. Covington, D. Nute, N. Schmitz, D. Goodman, From
English to Prolog via Discourse Representation Theory,
Research Report 01-0024, Artificial Intelligence Programs,
University of Georgia, 1988

[Fuchs & Fromherz 94] N. E. Fuchs, M. P. J. Fromherz, Transformational
Development of Logic Programs from Executable
Specifications, in C. Beckstein, U. Geske (eds.),
Entwicklung, Test und Wartung deklarativer KI-
Programme, GMD Studien Nr. 238, 1994

[Fuchs & Schwitter 95] N. E. Fuchs, R. Schwitter, Specifying Logic Programs in
Controlled Natural Language, CLNLP 95, Workshop on
Computational Logic for Natural Language Processing,
Edinburgh, 1995

[Ishihara et al. 92] Y. Ishihara, H. Seki, T. Kasami, A Translation Method
from Natural Language Specifications into Formal
Specifications Using Contextual Dependencies, in:
Proceedings of IEEE International Symposium on
Requirements Engineering, 4-6 Jan. 1993, San Diego, IEEE
Computer Society Press, pp. 232 - 239, 1992

[Kamp & Reyle 93] H. Kamp, U. Reyle, From Discourse to Logic, Introduction
to Modeltheoretic Semantics of Natural Language, Formal
Logic and Discourse Representation Theory, Kluwer
Academic Publishers, Dordrecht, 1993

[Macias & Pulman 92] B. Macias, S. Pulman, Natural Language Processing for
Requirements Specifications, in: F. Redmill, T. Anderson
(eds.), Safety-Critical Systems, Current Issues, Techniques
and Standards, Chapman & Hall, pp. 67-89, 1993

[Pulman 94] S. G. Pulman, Natural Language Processing and Requirements
Specification, Presentation at the Prolog Forum, Department of
Computer Science, University of Zurich, February 1994

[Pulman & Rayner 94] S. Pulman, M. Rayner, Computer Processable Controlled
Language, SRI International Cambridge Computer
Science Research Centre, 1994

[Wojcik et al. 90] R. H. Wojcik, J. E. Hoard, K. C. Holzhauser, The Boeing
Simplified English Checker, Proc. Internatl. Conf. Human
Machine Interaction and Artificial Intelligence in

10

Aeronautics and Space, Centre d'Etude et de Recherche
de Toulouse, pp. 43-57, 1990

