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ABSTRACT
We characterize those symmetric d-lenses which are representable

as cospans of d-lenses. Such a symmetric d-lens must have unique

corrs per pair of objects and satisfy two other technical conditions.

When the d-lens is also “least change” then the corresponding

cospan consists of c-lenses.
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• Information systems → Mediators and data integration;
Database design and models; Federated databases; • Computing
methodologies→ Modeling methodologies;
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1 INTRODUCTION
The body of this paper presents a collection of results that together

solve a characterisation problem. With the limitations of space, and

the need for precise mathematical argument, the sections following

this one are succinct and mathematically detailed, so it’s partic-

ularly appropriate to give some indication of the importance of

the problem here, and of the possibilities its solution opens in the

future work section. The problem we address is determining when

a symmetric lens may be “represented” by a cospan of asymmetric

lenses. The succeeding sections are laid out so as to provide a so-

lution to that problem, and to show exactly where each condition

needed for the characterisation of such symmetric lenses is used in

the arguments.

Cospans of lenses have been important since before lenses were

named. In consultancy work we determined that cospans of what

are now called c-lenses were particularly valuable in constructing

interoperations between legacy systems [5]. Remarkably often we

were able to construct such cospans, yet it is easy to show that
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not all bidirectional transformations when presented as symmetric

lenses can in fact arise from cospans of asymmetric lenses. Further

analysis revealed that a substantial part of the practical value of

cospans of lenses came from what would now be called a cyber

security problem – if the bidirectional transformation between two

organisations can be represented by a cospan of asymmetric lenses,

then the organisations are much more likely to agree to the work

because they can better manage the security of their own systems.

(A study of these kinds of cyber security issues, and of the relevance

of a cospan solution, is given in [12].)

But how can we tell if a particular bidirectional transformation

can indeed be decomposed into a cospan of asymmetric lenses?

That is the question that this paper answers.

In Section 2 we provide definitions and necessary previous re-

sults. In particular, we begin by defining symmetric d-lenses which

we continue to call fb-lenses to emphasize their propagation op-

erations, and the notion of equivalent fb-lenses. We also consider

asymmetric d-lenses and their special case, c-lenses. The notion of

representation of fb-lenses by either a span or cospan of asymmetric

lenses is made precise and we update the definition of compatibility

relation for an fb-lens from [10].

Section 3 has our main results. First we study two equivalence

relations defined from a compatibility relation on an fb-lens and

use them to define the category at the base of the cospan of d-lenses

that will represent the fb-lens. Next we define the Get functors for

the cospan and, after adding additional requirements, we define the

Puts. Finally, we show that the cospan we have defined represents

the original fb-lens. Finally, we show that if the fb-lens is also “least

change” (respectively, is “cartesian”), then the representing d-lenses

have pre-cartesian Get functors (respectively, are c-lenses).

2 DELTA LENSES
In this section we collect the definitions and results from previous

work that we need for our main results. We begin with definitions

of the symmetric and asymmetric delta lenses that we have already

studied extensively. We assume the reader is familiar with the

terminology of basic category theory for Computer Science as

found in, for example, Pierce’s [13]. We will usually use bold-face

for categories X,Y, . . ., upper case for objects X ,Y , . . . and lower

case for arrows x ,y, . . . with domain d0(x), codomain d1(x), and
write idX for an identity arrow. The class of objects of X is denoted

|X| and that of arrows Arr (X). The category whose objects are

arrows of X and whose arrows are commutative squares is denoted

X2
. Pullbacks are denoted using the usual fibred product notation.

The concept of a symmetric version of delta lenses was first in-

troduced by Diskin and colleagues [3]. We have used the following

definition in a series of articles [7–9]. The idea is that the categories

X and Y are model spaces: the objects are particular models and
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the arrows specify updating processes. The “corrs” are witnesses of

the consistency of a model in X and a model in Y. The propagation
operations restore consistency: when a model on one side is con-

sistent with a second model on the other and is updated to a new

state, the propagation operation specifies an update of the second

model to a consistent state witnessed by a new corr.

Definition 2.1. Let X and Y be categories. An fb-lens from X to

Y is a 4-tuple L = (δX,δY, f, b) : X←→ Y specified as follows. The

data δX,δY are functions with a common domain R for a span of

sets

δX : |X| oo R // |Y| : δY

An element of R is called a corr. For r in R, if δX(r ) = X ,δY(r ) = Y ,
the corr is denoted r : X ↔ Y , or sometimes just r : X −Y . The data
f and b are operations called forward and backward propagation:

f : Arr (X) × |X | R //Arr (Y) × |Y | R

b : Arr (Y) × |Y | R //Arr (X) × |X | R

where the pullbacks ensure that if f(x , r ) = (y, r ′), we have d0(x) =
δX(r ), d1(y) = δY(r

′) and similarly for b. We also require that

d0(y) = δY(r ) and δX(r
′) = d1(x), and the similar equations for

b.
Furthermore, we require that both propagations respect both the

identities and composition in X and Y, so that we have:

r : X ↔ Y ⇒ f(idX , r ) = (idY , r ) and b(idY , r ) = (idX , r )

and

f(x , r ) = (y, r ′), f(x ′, r ′) = (y′, r ′′) ⇒ f(x ′x , r ) = (y′y, r ′′)

and

b(y, r ) = (x , r ′), b(y′, r ′) = (x ′, r ′′) ⇒ b(y′y, r ) = (x ′x , r ′′)

It will eventually be important for us that every model state in

X or Y is consistent with at least one state on the other side, and

we define:

Definition 2.2. An fb-lens L = (δX,δY, f, b) is called δ surjective
if both δX and δY are surjective functions.

Notation.We will denote the pair f(x , r ) by (fa (x , r ), fc (x , r )) and
similarly for b.

We also need to recall the definition of the asymmetric version
of delta lens ([2, 6]) which we will usually abbreviate to d-lens. We

refer the reader to those articles for the “comma category” notation

(G, 1X) used in:

Definition 2.3. An asymmetric delta lens (d-lens) from S to X
is a pair (G, P) where G : S // X is a functor (the “Get”) and

P : |(G, 1X)| // |S2 | is a function (the “Put”) and the data for

x : G(S) // X and x ′ : G(S ′) // X ′ satisfy:

(i) d-PutInc: the domain of P(S,x) is S
(ii) d-PutId: P(S, idG(S )) = idS
(iii) d-PutGet: G(P(S,x)) = x
(iv) d-PutPut: if S ′ is the codomain of P(S,x) (so thatG(S ′) = X )

then P(S,x ′x) = P(S ′,x ′)P(S,x).

We recall two constructions of fb-lenses from d-lenses. First,

(see [9], p15) from a span (GL , PL) : X oo S // Y : (GR , PR ) of
d-lenses we construct an fb-lens whose corrs are the objects of

S, and whose forward propagation is defined by applying first PL
thenGR . Backward propagation is similar. On the other hand, (see

Construction 8 of [10]) from a cospan (GL , PL) : X // V oo Y :

(GR , PR ) of d-lenses we can also construct an fb-lens. Its corrs are

the pairs (X ,Y ) of objects of X and Y which are matching in the

sense thatGL(X ) = GR (Y ) and its forward propagation is defined

by applying first GL then PR . In [9] we worked through examples

of the first construction. The second construction will be important

to us in this article and here is an example.

Example 2.4. We denote by set the category whose objects are

finite sets and whose arrows are functions between them. As a

category of models, the model states (objects) of set are each just

a set, which can be thought of as the state of a single entity. An

arrow of set is a function which updates one state (entity set) to

another.

We also consider another category of model states, set2. An
object (or model state) X of set2 is a function Xf : X0

// X1

between sets X0 and X1. The object X has two entity sets, X0 and

X1, and one constraint specified by the function Xf . In a category

of models, X0 might be the current state of a Names entity, X1 that

of an Addresses entity, and Xf the assignment of a name to an

address. In another category of models, a model Yf : Y0 // Y1, Y0
might be the state of an Addresses entity, Y1 that of a Cities entity,
and Yf the assignment of an address to a city. An arrow in set2

from the object X to another object (model state) X ′ is a pair of
functions x = (x0,x1) between corresponding entity sets which

are compatible with the respective constraints in the sense that

X ′f x0 = x1Xf .

In [9] we defined two distinct d-lenses from set2 to set which
we briefly review.

The first d-lens (G1, P1) has as its Get the “codomain” functor

G1 : set2 // set which sends an object X with Xf : X0
// X1 of

set2 to the set G1(X ) = X1 and sends an arrow to its second factor.

The first Put, P1 is defined as follows. Consider any set X ′
1
and

any function, say x1 : X1
//X ′
1
, fromG1(X ) = X1 toX

′
1
. We require

P1(X ,x1) to be an arrow fromX . Its codomainX ′ is defined to be the
model with function X ′f = x1Xf : X ′

0
:= X0

//X ′
1
. Then the arrow

P1(X ,x1) is the pair (idX0
,x1) which satisfies x1Xf = X ′f idX0

.

The second d-lens (G0, P0) has as its Get the “domain” functor,

G0 : set2 // set which sends an object Y with Yf : Y0 // Y1 of
set2 to the set G0(Y ) = Y0 and sends an arrow to its first factor.

The second Put, P0 has a more interesting definition. Start with

a model Y and any function, say y0 : Y0 //Y ′
0
, fromG0(Y ) = Y0 to

Y ′
0
. The codomain of P0(Y ,y0) has to be an object Y ′ of set2 whose

function has the domain Y ′
0
. We define Y ′ to be the object whose

function is the bottom arrow in the set pushout of Yf along y0:

Y ′
0

Y ′
1Y ′f
//

Y0

Y ′
0

y0 ��

Y0 Y1
Yf // Y1

Y ′
1

y1��+
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Now we define P0(Y ,y0) to be the arrow in (set2) from Y to Y ′

defined by the pair of functions P0(Y ,y0) = (y0,y1).
Next we define the forward and backward propagations for the

fb-lens L constructed from the cospan:

(G1, P1) : set2 // set oo set2 : (G1, P1)

First note that a corr is a pair (X ,Y ) such that X1 = G1(X ) =
G0(Y ) = Y0. In the interpretations above this is a matching set of

Addresses. The forward propagation for an update x = (x0,x1) :
X // X ′ and a corr (X ,Y ) is the arrow y = (y0,y1) : Y // Y ′ and
the corr (X ′,Y ′) defined by y0 := x1 and where y1 and Y

′
f are the

co-projections to the pushout of Yf along y0 as in

X ′
0

X ′
1X ′f
//

X0

X ′
0

x0 ��

X0 X1

Xf // X1

X ′
1

x1��

Y0=

7→
f

X ′
1
=Y ′

0
Y ′
1Y ′f
//

Y0

Y ′
0

y0 ��

Y0 Y1
Yf // Y1

Y ′
1

y1��+

In the interpretation, when theNames to Addresses state is updated
with new addresses specified by x1 then that propagates to an

Addresses update in the other model category and the Cities are
freely updated (by y1) to accommodate the updated addresses.

The backward propagation for an update y = (y0,y1) : Y // Y ′

and a corr (X ,Y ) is the arrow x = (x0,x1) : X // X ′ and the corr

(X ′,Y ′) where x1 := y0, x0 := idX0
and X ′f := x1Xf .

X ′
0

X ′
1X ′f
//

X0

X ′
0

x0 ��

X0 X1

Xf // X1

X ′
1

x1��

X1 =

← �
b

Y ′
0

= Y ′
0

Y ′
1Y ′f
//

Y0

Y ′
0

y0 ��

Y0 Y1
Yf // Y1

Y ′
1

y1��

Interpreting this propagation is easy: In its codomain the Addresses
update is simply composed with the original names to addresses

mapping and the Names do not change.

There is a close relationship between fb-lenses and spans of

d-lenses. An important result in [9] is the representation of an

equivalence class of fb-lenses (related by equivalent behaviour)

by an equivalence class of spans of asymmetric delta lenses. The

representation is compatible with span and lens composition. We

recall from [9] the equivalence relation on the fb-lenses from X to

Y.

Definition 2.5. Let L = (δX,δY, f, b) and L′ = (δ ′X,δ
′
Y, f
′, b′) be

two fb-lenses (fromX to Y) with corrs RXY,R′XY. We say L ≡fb L′ iff
there is a relation σ from RXY to R′XY with the following properties:

(1) σ is compatible with the δ ’s, i.e. rσr ′ implies δXr = δ ′Xr
′

and δYr = δ ′Yr
′

(2) σ is total in both directions, i.e. for all r in RXY, there is r
′

in R′XY with rσr ′ and conversely.

(3) for all r , r ′, x an arrow ofX, if rσr ′ and δXr is the domain of x
then the first components of f(x , r ) and f′(x , r ′) are equal and
the second components are σ related, i.e. fa (x , r ) = f′a (x , r

′)

and fc (x , r )σ f′c (x , r
′)

(4) the corresponding condition for b, i.e. for all r , r ′, y an arrow

of Y, if rσr ′ and δXr is the domain of x then ba (y, r ) =
b′a (y, r

′) and bc (y, r )σb′c (y, r
′)

The sense of representation we have in mind is the following.

Definition 2.6. Let L be an fb-lens. A span (GL , PL) : S // X,
(GR , PR ) : S // Y of d-lenses represents L iff up to a bijection

of the sets of corrs, the construction above gives forwards and

backwards propagations with the same actions as those of L. A
cospan (GL , PL) : X //V, (GR , PR ) : Y //V of d-lenses represents
L iff the analogous conditions hold.

We also recall from [9] that for a cospan (GL , PL) : X // V,
(GR , PR ) : Y // V of d-lenses, the projection functors from the

pullback in cat of the cospan are canonically the Gets for a span of

d-lenses. As we have noted before, the pullback is not a pullback in

a category of lenses.

Thus the “pullback” operation shows us that every cospan of

d-lenses is associated with a span of d-lenses (the one obtained by

“pulling back” the cospan) and both the span and cospan represent

the same fb-lens.

In [10] we defined a notion of compatibility relation for fb-lenses

derived from a consideration of cospans of d-lenses. For this article,

that notion is refined as follows (essentially by adding conditions

C1 and C3).

Definition 2.7. Let L = (δX,δY, f, b) be an fb-lens between X and

Y with corrs R. A compatibility relation on L is a relationC between

the arrows of X and the arrows of Y such that

C0: x C y implies that there exist corrs r : d0(x) ↔ d0(y) and
r ′ : d1(x) ↔ d1(y) (say: “C respects corrs”)

C1: For any r , idδX(r )C idδY(r ); and x C y and x ′C y′ implies

x ′x C y′y whenever x ′x and y′y are defined, that is C re-

spects identities and composition.

C2: if d0(x) = δX(r ) then x C fa (x , r ) and if d0(y) = δY(r ) then
ba (y, r )C y, that is the sides of propagation squares are C
related.

C3: x C y and x ′C y and x ′C y′ implies x C y′

Condition C3 says thatC is a difunctional relation (see [14] or [1,

p. 200]). We have previously called such a relation a coproduct of

complete bipartite relations. See also [15].

Proposition 2.8. Let L be the fb-lens constructed from the cospan
(GL , PL) : X // S oo Y : (GR , PR ) of d-lenses. Then C = {(x ,y) |
GL(x) = GR (y)} is a compatibility relation.

Proof. The required corrs for C0 are given by (d0(x),d0(y)) and
(d1(x),d1(y)). For identities ( as in C1), if GL(X ) = GR (Y ), then
GL(idd0(X )) = idGL (X ) = idGR (Y ) = GR (idd0(Y )). For the compo-

sition, functoriality of the Gets also suffices. For C2, if r is the

pair (d0(x),d0(y)), we have fa (x , r ) = PR (GL(x)), but PutGet gives
GRPR (GL(x)) = GL(x), so x C fa (x , r ). C3 is just transitivity of

equality. �
There is an important special case of d-lens (as shown in [6])

called the c-lens. We refer the reader to any of [6], [7], [10] or

[11] for the definition of c-lens. The idea is that the Put of an arrow

satisfies a universal property requiring it to the best possible update

in the sense that it requires the “least change” to the domain S of

P(S,x). In [10] we defined a least change property for an fb-lens

with a compatibility relation. The idea is that the propagations will

satisfy a universal property.
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Definition 2.9. An fb-lens L equipped with a compatibility re-

lation C is called least-change if for any x : X // X ′ and corr

r : X ↔ Y it is the case that fa (x , r ) satisfies the following uni-

versal property: For any y : Y // Y ′′ compatible with x there is

a unique y′ : Y ′ // Y ′′ with y = y′fa (x , r ) and idX ′ C y′ : and
similarly for the back propagation b.

X ′ Y ′

X

X ′

x
��

X Yr Y

Y ′

fa (x,r )
��

Y

Y ′′

y

��

Y ′

Y ′′

y′

��✤
✤
✤X ′

Y ′′
❊❊

❊❊
❊❊

❊❊

We showed in [10] that if a cospan of c-lenses represents L, then L
is least change. More generally, such a cospan satisfies the following

more general condition that accounts for composites with x .

Definition 2.10. An fb-lens L equipped with a compatibility rela-

tionC is called cartesian if for any x : X //X ′ and corr r : X ↔ Y
it is the case that fa (x , r ) satisfies the following universal property:

For any x ′ : X ′ //X ′′ and y : Y //Y ′′ compatible with x ′x there

is a unique y′ : Y ′ // Y ′′ with y = y′fa (x , r ) and x ′C y′ : and
similarly for the back propagation b.

X ′ Y ′

X

X ′

x
��

X Yr Y

Y ′

fa (x,r )
��

Y

Y ′′

y

��

Y ′

Y ′′

y′

��✤
✤
✤X ′

X ′′

x ′

��
X ′′ Y ′′

3 COMPATIBILITY AND A COSPAN
We will show that certain fb-lenses with compatibility give rise

to cospans of d-lenses. Our first objective is the construction of

a cospan of categories GL : X // C oo Y : GR from an fb-lens

L = (δX,δY, f, b) with compatibility relation C and we fix L and C
for the rest of this section. We will need additional conditions to

ensure that the cospan represents L. We note in passing that the

results in Lemmas 3.1, 3.3 and 3.5 do not require property C2 of

a compatibility relation (Definition 2.7), nor is it needed for the

construction of objects and arrows of the base C of the cospan.

However, to define the composition in C we do need C2.

3.1 The ZX Property
We will call condition C3 of Definition 2.7 the ZX property – short

for Z implies X.

Lemma 3.1. The ZX property for a compatibility relation implies
the ZX property for corrs. That is, for corrs r0, r1, r2 with δ ’s as sug-
gested by the left figure below, there is a corr r3 as in the right figure:

r0

r1

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧
r2

r0

r1

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧
r2

r3

❄❄
❄❄

❄❄
❄❄

❄❄

Proof. Given the figure of corrs:

A B
r0

A

D

B

D

r1
⑧⑧
⑧⑧
⑧⑧
⑧⑧

D Er2

consider the identities at all four corner objects and then C1 and C3

imply idAC idE , so by C0 there is a corr fromA to E as required. �
We remark that the “reversal of Z” implies X also holds, which we

call backwards ZX. (Start from the diagram using the other diagonal.)

Definition 3.2. Define the relation N on corrs by rNr ′ for corrs
r , r ′ if there is a corr r ′′ such that δX(r

′′) = δX(r ) and δY(r
′′) =

δY(r
′)

In other words, in a diagram of corrs, r and r ′ can be represented

as the top and bottom, respectively, of a Z. By the ZX property,

equivalently r and r ′ are the top and bottom, respectively, of a

backwards Z of corrs.

Lemma 3.3. N is an equivalence relation

Proof. First r N r is obvious. If r N r ′ then r ′ N r by the ZX property

(and a vertical flip of the diagram). Now suppose r N r ′ and r ′ N r ′′

via:

r

r1

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧
r ′

r ′

r2

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧
r ′′

We can stack the Z’s:

r

r1

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

r2
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

r ′′

✎
✎
✎
✎
✎
✎
✎
✎

so there is a backwards Z formed by r1, r
′
, and r2, and we apply ZX

to get the top-right to bottom left corr witnessing r N r ′′. �
As we did for corrs, we now define a relation on C-related pairs

of arrows.

Definition 3.4. Let C be a compatibility relation. Define a rela-

tion E on C-related pairs by (x ,y)E (x ′,y′) if and only if x ′C y (or,

equivalently by the ZX property, iff x C y′).

Lemma 3.5. E is an equivalence relation

Proof. The proof uses arguments parallel to Lemma 3.3.

First, clearly (x ,y)E (x ,y). If (x ,y)E (x ′,y′) then by the ZX prop-

erty x C y′ so (x ′,y′)E (x ,y). Suppose that (x ,y)E (x ′,y′) and that

(x ′,y′)E (x ′′,y′′) so x ′C y, x ′C y′ and x ′′C y′. Now by the ZX

property we get x ′′C y whence (x ,y)E (x ′′,y′′) as required for

transitivity. �
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3.2 The Category C
Construction. We specify the data for a category we will call C
and which will be the base of a cospan from X to Y.

Objects: |C|, the objects of C, is the set R/N . So objects of C
are N -equivalence classes of corrs. For a corr r , we denote its N
equivalence class [r ]N , and occasionally omit the subscript.

Arrows: For objects A,B in |C|, we first define

CA,B = {(x ,y) ∈ C | ∃r0 ∈ A, r1 ∈ B with δX(r0) = d0(x),

δY(r0) = d0(y),δX(r1) = d1(x),δY(r1) = d1(y)}

Graphically, we are requiring:

r1

x
��

r0

y
��

We denote by EA,B the restriction of E to CA,B , and remark that

it is still an equivalence relation. Define the hom-set C(A,B) to be

CA,B/EA,B .

For a compatible pair of arrows (x ,y) we denote its E equivalence

class [(x ,y)]E , and usually omit the subscript.

Composition: To define the composite of equivalence classes д =
[(x ,y)]E ∈ C(A,B) and h = [(v,w)]E ∈ C(B,D) we will construct
a representative of the second equivalence class which is directly

composable with (x ,y).
For the representatives (x ,y) and (v,w) there are corrs with δs

as indicated in the squares below:

r1

x
��

r0

y
��

r3

v
��

r2

w
��

Since r1, r2 are in B, there are corrs r4 from d1(y) to d0(v) and r5
from d1(x) to d0(w) which we use to define the composite

hд = [(ba (w, r5)x , fa (v, r4)y)] (1)

as shown in the following diagram:

r1

x
��

r0

y
��

r3

v
��

r2

w
��

r4

③③③③③③③③③③③③③③

r5

❉❉❉❉❉❉❉❉❉❉❉❉❉❉

fa (v,r4)
��

ba (w,r5)
��

Notice that the definition of composition does not involve any

of r0, r1, r2, r3. Furthermore, in the definition of hд we need to

know that ba (w, r5)x C fa (v, r4)y. Since x C y, that follows by C1 if

ba (w, r5)C fa (v, r4). However, the latter follows from v C fa (v, r4),
v Cw , ba (w, r5)Cw and ZX. Notice that here we finally use the

condition C2.

Identities: To define the identity on an object A of C, choose a
corr r in A. The identity will be [(idδX(r ), idδY(r ))].

The idea behind the definition of the composite (1) is to replace

(v,w) with an E-equivalent pair which is directly composable with

the pair (x ,y). We need to show that the definitions of composition

and identity are well-defined, that is independent of the choice of

representatives.

Proposition 3.6. The definition of identities for C is well-defined.

Proof. The proof only depends on the fact that identities propagate

to identities.

Suppose rNr ′. Then there is an r ′′ with δX(r
′′) = δX(r

′) and

δY(r
′′) = δY(r ). Since fa (idδX(r ′), r

′′) = idδYr , we have further that

idδX(r ′)C idδYr showing (idδX(r ), idδY(r ))E (idδX(r ′), idδY(r ′)). �
We note the following useful lemma:

Lemma 3.7. Suppose (x ,y)E (x ′,y′) and (v,w)E (v ′,w ′), and that
d1(x) = d0(v), d1(x ′) = d0(v

′), d1(y) = d0(w) and d1(y′) = d0(w
′)

(so that (x ,y) directly composes with (v,w) and (x ′,y′) directly com-
poses with (v ′,w ′)), then

(vx ,wy)E (v ′x ′,w ′y′).

Proof. Since (x ,y)E (x ′,y′), we have x ′C y. Similarly, since we

have (v,w)E (v ′,w ′),we havev ′Cw . So by C1,v ′x ′Cwy showing

that (vx ,wy)E (v ′x ′,w ′y′). �

Proposition 3.8. The composite specified by (1) is well-defined,
that is it is independent of the choice of (x ,y), (v,w), r4 and r5.

Proof. We begin with independence of the choice of r4: Suppose
that s4 is a corr “parallel” to r4, that is δX(r4) = δX(s4) and δY(r4) =
δY(s4). As noted above, ba (w, r5)C fa (v, r4) and by the same argu-

ment ba (w, r5)C fa (v, s4). Thus we have

(ba (w, r5), fa (v, r4))E (ba (w, r5), fa (v, s4)).

Then, since the domains of fa (v, r4) and fa (v, s4) are the same, by

Lemma 3.7 we have that

(ba (w, r5)x , fa (v, r4)y)E (ba (w, r5)x , fa (v, s4)y)

so [(ba (w, r5)x , fa (v, r4)y)] = [(ba (w, r5)x , fa (v, s4)y)] as required.
Independence of the choice of r5 is similar.

Now consider (v,w): Suppose that (v,w)E (v ′,w ′). We will show

that the composites according to (1) of (x ,y) with each of (v,w)
and (v ′,w ′) are equivalent. Let f = fa (v, r4) and b = ba (w, r5)
as in (1). Similarly, let f ′ = fa (v ′, r ′

4
) and b ′ = ba (w ′, r ′

5
) as

in (1) for (v ′,w ′). Now (v,w)E (b, f ) and (v ′,w ′)E (b ′, f ′). Since
(v,w)E (v ′,w ′), transitivity now gives (b, f )E (b ′, f ′) whence by
Lemma 3.7 the composites (bx , f y) and (b ′x , f ′y) are E-equivalent
as required.

Finally, we consider independence of the choice of (x ,y): Suppose
that (x ,y)E (x ′,y′). As above, let f = fa (v, r4) and b = ba (w, r5)
as in (1). This time, let f ′′ = fa (v, r ′′

4
) and b ′′ = ba (w, r ′′

5
) as

in (1) for (x ′,y′). Now (v,w)E (b, f ) and (v,w)E (b ′′, f ′′), so by

transitivity (b, f )E (b ′′, f ′′), and applying Lemma 3.7, we have

(bx , f y)E (b ′′x ′, f ′′y′) as required. �

Proposition 3.9. C is a category.
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Proof. We have seen above that there is a well-defined composi-

tion for C. Clearly the identities defined above act as units for the

composition.

Associativity of composition is the only further requirement.

For this, refer to Figure 1 and suppose that the arrows [(x ,y)],
[(v,w)], and [(u, z)] are composable. From composability of [(x ,y)],
[(v,w)] there are corrs t , t ′, From composability of [(v,w)], and
[(u, z)] there are corrs s, s ′. Where possible, in what follows we will

elide brackets, subscripts and commas, and write, for example fxr
instead of fa (x , r ). Now let v ′ = bwt ′,w ′ = fvt , u ′ = bzs ′, z′ = fus ,
b = ba (z′w, t ′) and f = fa (u ′v, t). Since v ′Cw and v Cw ′, there
are corrs r , r ′. Define u ′′ = bz′r ′ and z′′ = fu ′r .

x
��

y
��

b

��

f

��

t ′

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼

r ′ ✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼
v ′
��

w ′
��

u′′

��
z′′

��

t
✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞

r

✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
v
��

w
��

u′
��

z′
��

s

③③③③③③③③③③③③③③ s ′ ❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉

u
��

z
��

x
��

y
��

q′

✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳

v ′
��

w ′
��

bzq′
��

c0

fuq
��

c1

v
��

w
��

q

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏

u
��

c2

z
��

Figure 1: Associativity

The right bracketed composite, namely [(x ,y)]([(v,w)][(u, z)]),
is [(ba (z′w, t ′)x , fa (u ′v, t)y))] and by compositionality of f and b,
we get [(x ,y)]([(v,w)][(u, z)]) = [(bz′r ′ · bwt ′ · x , fu ′r · fvt · y)].
Since (v,w)E (v ′,w ′) there are corrs c0 N c1 linking the codomains

as shown. Since [(v,w)] and [(u, z)] are composable, there is a corr

c2 at the domains of the pair (u, z) and we have c2 N c1. So by

transitivity c0 N c2 and there are corrs q,q′ as shown. It is also the

case that ([(x ,y)][(v,w)])[(u, z)] = [(bzq′ · bwt ′ · x , fuq · fvt · y)].
Thus we need to show that [(bz′r ′ · bwt ′ · x , fu ′r · fvt · y)] =

[(bzq′ · bwt ′ · x , fuq · fvt · y)]. By Lemma 3.7 it is enough to show

[(bz′r ′, fu ′r )] = [(bzq′, fuq)], which would follow from bz′r ′C fuq.
But bz′r ′C z′ (z′ = fus), uC fus and uC fuq, so by the ZX property

bz′r ′C fuq. �

3.3 The Cospan
The next step is to define a cospan from X to Y with base C.

Assumption. For the rest of this section we assume that the fb-lens
L with compatibility relation C is δ -surjective.

We now define the left Get functor GL : X // C as follows:

For an object X of X there is a corr r with X = δX(r ) and let

GL(X ) = [r ]N . To see thatGL(X ) is well-defined, notice that if also
X = δX(r

′) then r ′ itself proves that [r ′]N = [r ]N .

For an arrow x : X // X ′ of X there is a corr r with X =
δX(r ) and we have x C fa (x , r ). Define GL(x) = [(x , fa (x , r ))]. To
see thatGL(x) is well-defined, we suppose that alsoX = δX(r

′). We

need to know that (x , fa (x , r ))E (x , fa (x , r ′)), but this is proved by

x C fa (x , r ).

Proposition 3.10. GL is a functor.

Proof. We note first that

GL(idX ) = [(idX , fa (idX , r )] = [(idX , idδY(r ))].

Next suppose that x : X //X ′ and x ′ : X ′ //X ′′ are composable

in X. There is a corr r with X = δX(r ) and GL(x) = [(x , fa (x , r ))].
Let r ′ = fc (x , r ), so GL(x

′) = [(x ′, fa (x ′, r ′))] while

GL(x
′x) = [(x ′x , fa (xx ′, r ))]

= [(x ′, fa (x ′, r ′))][(x , fa (x , r ))]

= GL(x
′)GL(x)

The first and third equalities are by definition. The secondmay seem

obvious by compositionality of f, but requires a short comment. By

definition

[(x ′, fa (x ′, r ′))][(x , fa (x , r ))]

= [(ba (fa (x ′, r ′), r ′)x , fa (x ′, r ′)fa (x , r ))].

But x ′C fa (x ′, r ′), so we have that

(ba (fa (x ′, r ′), r ′), fa (x ′, r ′))E (x ′, fa (x ′, r ′)).

And finally

[(ba (fa (x ′, r ′), r ′)x , fa (x ′, r ′)fa (x , r ))]

= [(x ′x , fa (x ′, r ′)fa (x , r ))]

so we are done. �
The right Get functor GR : Y // C is defined similarly: on

an arrow y of Y, define GR (y) = [(y, ba (y, r ))] where r satisfies

d0(y) = δY(r )

4 THE COSPAN OF D-LENSES
Even before defining Puts, note that the constructed cospan defines

a relation on pairs (x ,y) of arrows from X and Y that we denote

C ′ = {(x ,y) | GL(x) = GR (y)} which (except for C2) has the

properties of a compatibility relation. We show immediately:

Proposition 4.1. C ′ = C

Proof. To prove that C ′ ⊆ C , suppose that we have x C ′y so

that [(x , fa (x , rx ))] = [(ba (y, ry ),y)] for suitable corrs rx , ry . Now
x C fa (x , rx ), ba (y, ry )C y, and by hypothesis ba (y, ry )C fa (x , rx ),
so by the ZX property we have x C y as required.

For the reverse inclusion, if x C y we have x C fa (x , rx ) and then

ba (y, ry )C y so by ZX, ba (y, ry )C fa (x , rx ). Hence we further have
(x , fa (x , rx ))E (ba (y, ry ),y), and that means finally that we have

[(x , fa (x , rx ))] = [(ba (y, ry ),y)] and x C ′y as required. �
We want to show that the original fb-lens with compatibility C

is represented by the cospanGL : X // C oo Y : GR of d-lenses

with Puts PL and PR to be defined now.
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First we define PL . Suppose we are given X in X and an arrow

[(x ,y)] in C with d0([(x ,y)]) = GL(X ) where GL(X ) = [r
′]N and

δX(r
′) = X . Since x C y, there is a corr r ′′ with δY(r

′′) = d0(y) and
δX(r

′′) = d0(x) and r
′ N r ′′. Thus there is r : X ↔ d0(y) as in

X
r ′

X

d0(y)

r ▲▲▲
▲▲▲

▲

d0(x) d0(y)r ′′

Now define PL(X , [(x ,y)]) = ba (y, r ). PR is defined similarly.

We need to know that the definition of PL is independent of the

choice of (x ,y) and r . We assume the following condition to ensure

the former, and later that r is unique for the latter.

Definition 4.2. For arrows x ,x ′ we say xKx ′ if there is a y such

that x C y and x ′C y. Similarly for yKy′. An fb-lens L satisfies con-
dition κ iff whenever yKy′ and there are corrs r : X ↔ d0(y),
r ′ : X ↔ do (y

′), we have ba (y, r ) = ba (y′, r ′), and the similar

condition for f.

The following shows that condition κ is necessary for our con-

struction.

Proposition 4.3. Let L be the fb-lens constructed from the cospan
(GL , PL) : X // S oo Y : (GR , PR ) of d-lenses. Then L satisfies
condition κ. Moreover, there is at most one corr between any pair of
objects X , Y .

Proof. Note that yKy′ means there is an x with GL(x) = GR (y) =
GR (y

′), so the X has GL(X ) = d0(x) = d0(y) and also

ba (y, r ) = PL(X ,GR (y)) = PL(X ,GR (y
′)) = ba (y′, r ′).

Uniqueness of corrs is by their definition. �
To ensure that the definition of PL does not depend on the choice

of r we have the following.

Definition 4.4. An fb-lens L has unique corrs (or say L is u-corr)
iff for any pair of objects X , Y there is at most one corr r with

X = δX(r ) and Y = δY(r ).

We remark that the fb-lens constructed from a cospan of d-lenses

clearly has unique corrs.

Proposition 4.5. Let L be a δ -surjective fb-lens with compatibility
relation C , satisfying condition κ and having unique corrs, then PL
and PR are well-defined.

Proof. As noted, we require that PL(X , [(x ,y)]) as defined above

does not depend on the choice of (x ,y) or r . Suppose that [(x ,y)] =
[(x ′,y′)] so that (x ,y)E (x ′,y′) and hence x C y and x C y′ so that

yKy′. Now suppose further that

GL(X ) = d0([(x ,y)]) = d0([(x
′,y′)]).

As above there are corrs r : X ↔ d0(y), r
′
: X ↔ d0(y

′). By κ, we
have PL(X , [(x ,y)]) = ba (y, r ) = ba (y′, r ′) = PL(X , [(x

′,y′)]) and
of course r and r ′ are unique.

PR is similar. �

Assumption. For the rest of this section we assume that the fb-lens
L with compatibility relation C which is under consideration and
which defines GL , PL , GR and PR both satisfies condition κ and has
unique corrs.

Proposition 4.6. Let L be a δ -surjective fb-lens with compatibility
relationC , satisfying condition κ and with unique corrs, then (GL , PL)
and (GR , PR ) are d-lenses.

Proof. By construction, the domain of PL(X , [(x ,y)]) = δX(r ) is X ,

so PL satisfies d-PutInc.

Next observe that the identity on GL(X ) is [(idX , idδY(r ))] for
a corr r , so we have PL(X , [(idX , idδY(r ))]) = ba (idδY(r ) , r ) = idX .

Thus PL satisfies d-PutId.

Now consider d-PutGet. Suppose that d0([(x ,y)]) = GL(X ). We

need to show that GLPL(X , [(x ,y)]) = [(x ,y)]. Let r
′, r , r ′′ be as in

the definition of PL above, so

GLPL(X , [(x ,y)]) = GL(ba (y, r )) = [(ba (y, r )), fa (ba (y, r ), r )]

and δX(r ) = X . But now ba (y, r )C y so

(x ,y)E (ba (y, r ), fa (ba (y, r ), r ))

and thus [(ba (y, r )), fa (ba (y, r ), r )] = [(x ,y)] as required.
Finally, we consider d-PutPut.

Suppose [(x ,y)] and [(v,w)] are composable and further that

GL(X ) = d0([(x ,y)]). We need to show that

PL(X , [(v,w)][(x ,y)]) = PL(X
′, [(v,w)])PL(X , [(x ,y)])

where X ′ = d1(PL(X , [(x ,y)])). Consider the following:

X

r

❙❙❙❙
❙❙❙❙

❙❙❙❙
❙❙❙❙

❙❙❙❙X

δX(t)

ba (y,r )

��
δX(t)

ba (f ,t )

��

δX(t) t

❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡
ba (f y,r )

��

x
��

y
��

v
��

w
��

s

③③③③③③③③③③③③③③

s ′

❉❉❉❉❉❉❉❉❉❉❉❉❉❉

f =fa (v,s)
��

Where we shorten fa (v, s) to f . The right hand squares are the rele-
vant part of the definition of [(v,w)][(x ,y)]. Since PL(X , [(x ,y)]) =
ba (y, r ) is C related to y, there is a corr we denote t with δX(t) =
d1(PL(X , [(x ,y)])) = X ′. Since [(v,w)] = [(v, fa (v, s))] = [(v, f )],
we have PL(X

′, [(v,w)]) = PL(δX(t), [(v, f )]) = ba (f , t). Thus the
composite of Puts is

PL(X
′, [(v,w)])PL(X , [(x ,y)]) = ba (f , t)ba (y, r )

On the other hand, the Put of the composite is

PL(X , [(v,w)][(x ,y)]) = ba (f y, r ) = ba (f , t)ba (y, r )

by compositionality of ba , so we are done. The proof for (GR , PR )
is the same. �

We have completed the construction of a cospan of d-lenses from

a suitable fb-lens L. There is an fb-lens L′ constructed from this

cospan of d-lenses. It is, of course, not the same as L, but it has
closely related behaviour and indeed:
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Theorem 4.7. Let L be a δ -surjective fb-lens with compatibility
relation C , satisfying condition κ and with unique corrs. The fb-lens
L′ constructed from the cospan

(GL , PL) : X // C oo Y : (GR , PR )

of d-lenses defined above satisfies L ≡fb L′.

Proof. In the construction of L′, we define its set of corrs to be

R′ = {(X ,Y ) | GL(X ) = GR (Y )}. To show that L ≡fb L′ we need a

relation σ from R to R′. For r in R and (X ,Y ) in R′, define r σ (X ,Y )
iff δX(r ) = X and δY(r ) = Y . We need to show that σ satisfies the

properties of Definition 2.5.

Condition 1. is immediate by the definition of σ . For condition 2.,

if r in R, with δX(r ) = X and δY(r ) = Y , we have GL(X ) = [r ]N =
GR (Y ), so (X ,Y ) in R′ with r σ (X ,Y ). Conversely, if (X ,Y ) in R′,
then for some r ′, r ′′ in R, we have [r ′] = GL(X ) = GR (Y ) = [r

′′]

with δX(r
′) = X and δY(r

′′) = Y , so r ′ N r ′′ and there is r with

δX(r ) = X and δY(r ) = Y . Thus r σ (X ,Y ).
For condition 3., suppose r σ (X ,Y ) and δX(r ) (which must be

X !) is the domain of x . We need to show that fa (x , r ) = f′a (x , (X ,Y ))
and fc (x , r )σ f′c (x , (X ,Y )). Now by definition, since r : X ↔ Y , we
have f′a (x , (X ,Y )) = PR (Y , [(x , fa (x , r ))]), but d0(fa (x , r )) = Y and

corrs (in L) are unique, so we have PR (Y , [(x , fa (x , r ))]) = fa (x , r )
as required. Moreover, that means that the second component

fc (x , r ) is the unique corr fromd1(x) tod1(fa (x , r )). The corr fc (x , r )
proves that the pair (d1(x),d1(fa (x , r ))) is in R′ and is, of course,

f′c (x , (X ,Y )). Thus fc (x , r )σ f′c (x , (X ,Y )). The argument for condi-

tion 4. is similar. �

Corollary 4.8. With the hypotheses of the Theorem, the cospan

(GL , PL) : X // C oo Y : (GR , PR )

represents L.

Proof. We just note that the mapping r 7→ (δX(r ),δY(r )) from R
to R′ is actually a bijection since L is δ -surjective and has unique

corrs. �

5 LEAST CHANGE ANDWEAK
INVERTIBILITY

So far we do not have a definition for the equivalence of two cospans

of asymmetric lenses and we will have not yet explored the effect

of constructing a symmetric lens from a cospan and then using the

construction above to form a (presumably equivalent) cospan from

the resulting symmetric lens.

Proposition 5.1. Let L = (δX,δY, f, b) be an fb-lens between X
and Y with unique corrs and a compatibility relation C . If L is least
change then the d-lenses in the cospan GL : X // C oo Y : GR are
pre-cartesian. If L is cartesian then the d-lenses are c-lenses.

Proof. We show first that if L is least change then PL is pre-

cartesian. We need to show that PL satisfies a universal prop-

erty, so consider ba (y, r ) = PL(X , [(x ,y)]) where X = δX(r ) and
d0(y) = δY(r ). Suppose that x

′
: X //X ′ andGL(x

′) = [(x ,y)]. We

also have, by the definition, thatGL(x
′) = [(x ′, fa (x ′, r ))]. Denote

the codomain of ba (y, r ) by Z and consider:

X r
❨❨❨❨❨❨❨

❨❨❨❨❨❨❨
❨❨❨❨❨X

Z

ba (y,r )
��
Z

X ′
x ′′��

x ′

��

x
��

y
��

Thus we have that [(x ,y] = [(x ′, fa (x ′, r ))], so that x ′C y and by

least change there is a unique x ′′ : d1(ba (y, r )) = Z // X ′ with
x ′′C idd1(y). Now for a corr r ′ from Z to d1(y) we have GL(x

′′) =

[(x ′′, fa (x ′′, r ′))] and we also have idd1(x )C idd1(y) so using that

x ′′C idd1(y) we have

[(x ′′, fa (x ′′, r ′))] = [(idd1(x ), idd1(y)] = idd1([(x,y)])

as required. Similarly for PR .
Now suppose that L is cartesian. We show that PL delivers carte-

sian arrows. Consider PL(X , [x ,y]) which by definition is byr . Sup-
pose thatGL(x

′) factors as [vw][xy]. Using the definition of compo-

sition, referring the diagram below and again eliding brackets, write

[vw][xy] = [(bwt · x , fvt ′ · y)]. By definition GL(x
′) = [(x ′, fx ′r )],

so x ′C fvt ′ · y and we can apply the cartesian property for b to ob-

tain a unique x ′′ with x ′′C fvt ′. Furthermore,GL(x
′′) = (x ′′, fx ′′s)

(where for example s = fc ((by, r ), r )) and since x ′′C fvt ′, GL(x
′′)

lies in the same equivalence class as (bwt , fvt ′)] which in turn is

equivalent to (v,w). This completes the proof.

X r
❭❭❭❭❭❭❭❭❭❭❭

❭❭❭❭❭❭X

Z

byr
��
Z

X ′

x ′′

��

Z
sx ′

��

x

��

y

��

bwt
��

fvt ′
��

v
��

w
��

t ′

③③③③③③③③③③③③③③
t

❉❉❉❉❉❉❉❉❉❉❉❉❉❉

��✎✎
✎✎
✎

fx ′′s

��

�
The following is a useful weakening of condition κ

Definition 5.2. Let L be an fb-lens with compatibility C . An fb-

lens L satisfies condition κ up to iso iff whenever yKy′ and there

are corrs r : X ↔ d0(y), r
′
: X ↔ do (xy

′), we have d1(ba (y, r )) �
d1(ba (y′, r ′)) and the iso commutes with the bs, and the similar

condition for f.

Proposition 5.3. Let L be a least change fb-lens, then L satisfies
condition κ up to iso.

Proof. Suppose that x C y,x C y′ and there are corrs r : X ↔
d0(y), r

′
: X ↔ d0(y

′). We want to show that d1(ba (y, r )) �
d1(ba (y′, r ′)).

Now ba (y′, r ′)C y′, so by the ZX property, ba (y′, r ′)C y. By least
change there is a unique z with

z : d1(ba (y, r )) // d1(ba (y′, r ′))
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and zC d1(y). Similarly, there is a unique z′ with z′C d1(y
′) and

z′ : d1(ba (y′, r ′)) // d1(ba (y, r )). As usual, since identities also

satisfy the property for z′z and zz′, we have z′ is the inverse of z
which completes the proof. �

The point of this proposition is that if L is least change (or better

cartesian) then we (almost) get condition κ for free which simplifies

the requirements for Proposition 4.6 and what follows.

For an fb-lens, the followingweak invertibility property is clearly

desirable and resembles the rlr = r property from [4].

Definition 5.4. [3] Let L be an fb-lens. L is weakly invertible iff
for all x , r we have fa (ba (fa (x , r ), r ), r ) = fa (x , r ) and the similar

equation involving b.

Weak invertibility does not follow from the definition of an

fb-lens, but we do have the following.

Proposition 5.5. Suppose that the fb-lens L is constructed from
the cospan GL : X // C oo Y : GR of d-lenses, then L is weakly
invertible.

Proof. This is a straightforward calculation using the PutGet law.

Suppose r is the corr (X ,Y ) from GL(X ) = GR (Y ) and d0(x) = X .
Then

fa (ba (fa (x , r ), r ), r ) = fa (PL(X ,GR ((PR (Y ,GL(x)))), r )

= fa (PL(X ,GL(x)), r )

= PR (Y ,GL(PL(X ,GL(x)))

= PR (Y ,GL(x)) = fa (x , r )

The second and fourth equalities are from PutGet and the rest are

by definition. The equation for back propagation is similar. �
Combining this result with Theorem 4.7, we immediately have

Corollary 5.6. Let L be a δ -surjective fb-lens with compatibility
relation C , satisfying condition κ and with unique corrs, then L is
weakly invertible.

6 CONCLUSION
Suppose we begin with (GL , PL) : X // C oo Y : (GR , PR ), a
cospan of d-lenses, and construct the fb-lens L as above. We have

shown that L is δ -surjective, has a compatibility relationC , satisfies
condition κ and has unique corrs. So these conditions are necessary
for a lens to arise from a cospan. The bulk of the work in this paper

has been to show that those conditions are also sufficient: Given
a symmetric lens L satisfying those conditions we can construct a

cospan of d-lenses which represents L.
Thus, we now know how to identify those symmetric lenses

which can be represented by cospans of d-lenses and these have

desirable properties for software engineering and cyber security.

7 FUTUREWORK
The question of why we have so frequently been able to find such

cospans of lenses in practice remains, and we have some interest-

ing hypotheses to explore. Meanwhile there are also important

new mathematical questions that are opened up by the analysis

presented here.

Recall that in Proposition 5.3 we demonstrated that least change

lenses automatically satisfy condition κ up to isomorphism. Simi-

larly, it appears that the functors of GL and GR , which are defined

for a merely δ -surjective fb-lens with compatibility relation, also

come equipped with Puts except that they need not satisfy d-PutPut.

Yet again, when the fb-lens is least change the putative Puts do

appear to satisfy d-PutPut up to isomorphism. The move from

equational axioms to weaker systems that replace equalities with

coherent isomorphisms is rarely straightforward, but usually very

productive, and it seems likely that in such a theory of d-lenses,

least change lenses will play a special role.

It may be the case that because our consultancy work involved

least change lenses the remarks of the preceding paragraph, once

the mathematics is completed, might further explain why we so

regularly were able to find cospans of lenses: With minor adjust-

ments for δ -surjectivity the remaining required conditions may be

automatically satisfied, up to isomorphism, by least change lenses.
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