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a b s t r a c t

An algebraically exact category is one that admits all of the limits and colimits which every
variety of algebras possesses and every forgetful functor between varieties preserves, and
which verifies the same interactions between these limits and colimits as hold in any
variety. Such categories were studied by Adámek, Lawvere and Rosický: they characterised
them as the categories with small limits and sifted colimits for which the functor taking
sifted colimits is continuous. They conjectured that a complete and sifted-cocomplete
category should be algebraically exact justwhen it is Barr-exact, finite limits commutewith
filtered colimits, regular epimorphisms are stable by small products, and filtered colimits
distribute over small products. We prove this conjecture.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the series of papers [1,4,3] the notion of an algebraically exact category was introduced and studied. A category C is
said to be algebraically exact if, firstly, it admits all of the operations CA

→ C of small arity which every variety of (finitary,
many-sorted) algebras supports and every forgetful functor between varieties preserves, and secondly, it obeys all of the
equations between such operations as are satisfied in every variety. Every variety admits small limits and sifted colimits,
and every forgetful functor between varieties preserves them; recall from [2] that sifted colimits are those which commute
with finite products in Set, most important amongst these being the filtered colimits, and the coequalisers of reflexive pairs
(see [6] for a detailed exposition of these notions). It follows that any algebraically exact category also admits small limits
and sifted colimits; and it turns out that these two kinds of operations in fact generate all of those required of an algebraically
exact category. As regarding the equations that hold between these operations, we observe that in any variety, the following
four exactness properties are verified:

(E1) Regular epimorphisms are stable under pullback, and equivalence relations are effective (i.e., the category is Barr-
exact);

(E2) Finite limits commute with filtered colimits;
(E3) Regular epimorphisms are stable by small products;
(E4) Filtered colimits distribute over small products (in the sense of [6, Definition 3.19]).

It follows that these same conditions are verified in any algebraically exact category, and it was conjectured in [1] that,
in fact, these four conditions completely characterise the algebraically exact categories amongst those categories with small
limits and sifted colimits. The conjecture was proved in [4] for the case of cocomplete categories with a regular generator,
and in [3] for the case of arbitrary cocomplete categories; the purpose of this article is to prove it in its full generality. We
shall do so using techniques developed in [8], though the arguments are straightforward enough that we can reproduce
them in full here, so making this article entirely self-contained.

In order to state the conjecture more precisely, we will make use of a different description of the algebraically exact
categories. We recall from [2] the construction which to every locally small category C assigns its free completion Sind(C)
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under sifted colimits. As in [9, Theorem 5.35], wemay obtain Sind(C) as the closure of the representables in [Cop, Set] under
sifted colimits, and now the restricted Yoneda embedding W : C → Sind(C) provides the unit at C of a pseudomonad on
CATwhose pseudoalgebras are the sifted-cocomplete categories. This pseudomonad is of the Kock–Zöberlein type—see [11]
and the references therein—forwhich pseudoalgebra structure is left adjoint to unit: which is to say that a categoryC admits
pseudoalgebra structure, and so sifted colimits, just whenW : C → Sind(C) admits a left adjoint.

It was shown in [1, Theorem 3.11] that if C is complete, then so too is Sind(C); that if F : C → D is a continuous functor
between complete categories, then so too is Sind(F); and that the unit C → Sind(C) and multiplication Sind(Sind(C))→
Sind(C) are always continuous functors. It follows that the pseudomonad Sind restricts and corestricts to one on CONTS, the
2-category of complete categories and continuous functors; and it was shown in [1, Corollary 4.4] that the pseudoalgebras
for this restricted pseudomonad are precisely the algebraically exact categories described above. Thus we are led, for the
purposes of this paper, to adopt the following definition.

Definition 1.1. A complete categoryC is said to be algebraically exact when the restricted Yoneda embeddingC → Sind(C)
admits a continuous left adjoint.

Our goal is to prove:

Theorem 1.2. A complete and sifted-cocomplete category C is algebraically exact just when it satisfies conditions (E1)–(E4).

Of course, any variety of algebras is algebraically exact; more generally, if C is an algebraically exact category, and T a
monad thereon whose functor part preserves sifted colimits, then the category CT of T -algebras will again be algebraically
exact. Any presheaf topos is algebraically exact, and as we shall see, so too is any essential subtopos of a presheaf topos;
as explained in [10], the toposes arising in this manner are those equivalent to categories of sheaves on some site (C, j) in
which each object X ∈ C admits a smallest j-covering sieve. Combining the above two results, we see that for (C, j) a site of
this form, and T a finitary monad on Set, the category of sheaves of T -algebras is an algebraically exact category. All of these
examples are cocomplete, and so covered by the results of [3]; for an example which is not, we can as in [3, Examples 3.2.2]
take an arbitrary subcategory C of an algebraically exact category E and form its closure under limits, filtered colimits and
reflexive coequalisers. The subcategory C̄ so obtained will clearly satisfy (E1)–(E4), but need not be cocomplete; so whilst
the results of [3] do not suffice to show C̄ to be algebraically exact, our theorem shows that this is, in fact, the case.

2. The result

Wenowgive the proof of Theorem1.2. As remarked above, any algebraically exact category does indeed satisfy (E1)–(E4);
and so our task is to show that these conditions in turn imply algebraic exactness. The idea behind the proof is to show
that any category C satisfying (E1)–(E4) admits a full structure-preserving embedding into some E which is an essential
localisation of a presheaf topos; recall that an essential localisation of a category is a subcategory reflective via a small-limit-
preserving reflector. Any such E will be algebraically exact, and nowwemay reflect this property along the full embedding,
so concluding that C itself is algebraically exact. This argument does not quite work as it stands, for reasons of size. The E
into which we would like to embed is a topos of sheaves on C, but only when C is small may such a topos be constructed;
in which situation, with C being small, and also small-complete, it is necessarily a preorder, which is far too restrictive. To
overcome this problem, we will first prove a variant of Theorem 1.2, in which suitable bounds have been introduced on the
size of the limits and colimits required, and then deduce the general result from this.

Our cardinality bounds will be governed by an infinite regular cardinal κ . Given any such κ , we define κ ′ to be the
cardinal (Σγ<κ2γ )+, and the pair (κ, κ ′) now has the property that whenever µ < κ and λ < κ ′, we have λµ < κ ′:
see [12, Proposition 2.3.5]. By a κ-limit we shall mean one indexed by a diagram of cardinality < κ , and we attach a
corresponding meaning to the term κ ′-colimit. We shall now describe a variant of the notion of algebraic exactness, which
we term κ-algebraic exactness, that deals only with κ-limits and κ ′-colimits.

There is a slight delicacy here as to the kinds of κ ′-colimit we will consider; it turns out that there are two natural
choices. For indeed, as a straightforward consequence of [4, Proposition 5.1], if C is complete, then the category Sind(C),
which we obtained as the closure of the representables in [Cop, Set] under sifted colimits, is equally well the closure of
those representables under reflexive coequalisers and filtered colimits. Thus a complete category C admits sifted colimits
just when it admits reflexive coequalisers and filtered colimits, and so the definition of an algebraically exact category could
just as well be phrased in terms of these latter kinds of colimit. However, as was shown in [5], a category C which is not
complete can admit all reflexive coequalisers and filtered colimits without admitting all sifted colimits. Thus, when we
impose cardinality bounds, there are two distinct possibilities as to the kinds of κ ′-colimit we consider: either the sifted
κ ′-colimits, or the reflexive coequalisers together with the filtered κ ′-colimits. It turns out to be the latter choice which
allows our proof to go through.

In order to define κ-algebraic exactness,we consider the 2-category κ-CONTS of κ-complete categories and κ-continuous
functors between them; on this, we will describe a pseudomonad whose pseudoalgebras will be the κ-algebraically exact
categories. Observe first that as well as the pseudomonad Sind on CATwe also have the pseudomonad P which freely adds
small colimits; its value at a category C is given by the closure of the representables in [Cop, Set] under all small colimits.
Proposition 4.3 and Remark 6.6 of [7] prove that if C is κ-complete, then so is PC; that if F : C → D is a κ-continuous
functor between such categories, then so is P F ; and that P ’s unit and multiplication are always κ-continuous. Thus we
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may restrict and corestrict P to a pseudomonad on κ-CONTS; and the pseudomonad of interest to us will be a submonad
of this, defined as follows. For each C in κ-CONTS, we let Sκ ′(C) denote the closure of C in PC under κ-limits, reflexive
coequalisers, and filtered κ ′-colimits; this closure may be constructed by a transfinite iteration as in [9, Section 3.5]. Let
V : C → Sκ ′(C) denote the restricted Yoneda embedding; now [8, Proposition 3.1] ensures that this V provides the unit
at C of a Kock–Zöberlein pseudomonad on κ-CONTS, and a κ-algebraically exact category will be a pseudoalgebra for this
pseudomonad. In other words, we say that:

Definition 2.1. A κ-complete category C is κ-algebraically exact just when the embedding V : C → Sκ ′(C) admits a
κ-continuous left adjoint.

Observe that this implies thatC has reflexive coequalisers and filtered κ ′-colimits, but may not imply that it has all sifted
κ ′-colimits; cf. [5]. We shall now prove the following refinement of Theorem 1.2.

Theorem 2.2. A category C with κ-limits, reflexive coequalisers and filtered κ ′-colimits is κ-algebraically exact just when:

(E1’) It is Barr-exact;
(E2’) Finite limits commute with filtered κ ′-colimits;
(E3’) Regular epimorphisms are stable by κ-small products;
(E4’) Filtered κ ′-colimits distribute over κ-small products.

Clearly, a complete and sifted-cocomplete C satisfies (E1’)–(E4’) for each regular κ if and only if it satisfies (E1)–(E4). On
the other hand, we have:

Proposition 2.3. A complete and sifted-cocomplete category C is algebraically exact if and only if it is κ-algebraically exact for
each regular κ .

By virtue of this Proposition and the comment preceding it, wemay prove Theorem 1.2 by proving Theorem 2.2, and then
taking the conjunction of all its instances as κ ranges across the small regular cardinals.

Proof of Proposition 2.3. For every κ , we observe that Sind(C) is closed under κ-limits, reflexive coequalisers and filtered
κ ′-colimits in [Cop, Set]; whence Sκ ′(C) ⊂ Sind(C) with the inclusion preserving all κ-limits. Hence if W : C → Sind(C)
admits a continuous left adjoint, then by restriction each V : C → Sκ ′(C) will admit a κ-continuous left adjoint.

Conversely, suppose that each V : C → Sκ ′(C) admits a κ-continuous left adjoint. As observed above, since C is
complete, it follows by [4, Proposition 5.1] that Sind(C) is the closure of the representables in [Cop, Set] under reflexive
coequalisers and filtered colimits. But it is easy to see that the collection of ϕ ∈ Sind(C) which lie in some Sκ ′(C) contains
the representables and is closed under reflexive coequalisers and filtered colimits, and so must be all of Sind(C); which is
to say that Sind(C) =


κ Sκ ′(C). Thus, since each V : C → Sκ ′(C) admits a left adjoint, so too doesW : C → Sind(C), and

it remains to show that this left adjoint is continuous. Given a small diagram D : I → Sind(C), we may choose a regular
cardinal κ such that DI ∈ Sκ ′(C) for each I ∈ I and also |I| < κ; now the diagram D factors as D′ : I → Sκ ′(C), and the
left adjoint of C → Sκ ′(C) preserves the limit of D′: from which it follows that the left adjoint of W preserves that of D, as
required. �

We now prove Theorem 2.2 for the case of a small C. Given such a C satisfying the conditions of the theorem, we
shall embed it into a κ-algebraically exact category via a functor preserving κ-limits, reflexive coequalisers and filtered
κ ′-colimits. It will then follow that C is κ-algebraically exact by virtue of the following result.

Proposition 2.4. Let J : C → E be fully faithful; supposemoreover thatC has, and that J preserves,κ-limits, reflexive coequalisers
and filtered κ ′-colimits, and that E is κ-algebraically exact. Then C is also κ-algebraically exact.

Proof. Because E is κ-algebraically exact, the functor J admits a left Kan extension

C

V
��

J //
∼=

E

Sκ ′(C)

LanV J

<<yyyyyyy

along V , which may be calculated as the composite

Sκ ′(C)
Sκ′ (J)
−−−→ Sκ ′(E)

L
−−−−→ E

with L the κ-continuous left adjoint of V : E → Sκ ′(E). Now Sκ ′(J) is an algebra morphism between free Sκ ′-algebras,
and as such, preserves κ-limits, reflexive coequalisers and filtered κ ′-colimits; whilst L preserves all colimits, being a left
adjoint. It follows that LanV J , like J , preserves κ-limits, reflexive coequalisers and filtered κ ′-colimits; whence the collection
of ϕ ∈ Sκ ′(C) for which LanV J lands in the essential image of J contains the representables and is closed under κ-limits,
reflexive coequalisers and filtered κ ′-colimits, and so must be all of Sκ ′(C). Hence LanV J factors as LanV J ∼= JM for some
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functor M : Sκ ′(C) → C. Since LanV J is κ-continuous and J is fully faithful, M is also κ-continuous. Moreover, we have
natural isomorphisms of homsets

C(MA, B) ∼= E(JMA, JB) ∼= E(LSκ ′(J)A, JB) ∼= Sκ ′(E)(Sκ ′(J)A, VJB) ∼= Sκ ′(E)(Sκ ′(J)A, Sκ ′(J)VB) ∼= Sκ ′(C)(A, VB)

so that M is left adjoint to V : C → Sκ ′(C), and C is κ-algebraically exact. �

Given a small, κ-complete C, admitting reflexive coequalisers and filtered κ ′-colimits, and satisfying (E1’)–(E4’), we now
exhibit an embedding of the above form; as anticipated at the start of this section, it will in fact be an embedding into a
topos. We consider the smallest topology on C for which all regular epimorphisms are covering, and for which the colimit
injections into each filtered κ ′-colimit are covering. (E1’) and (E2’) ensure that this topology is subcanonical and so we have
a full embedding Jκ : C → Shκ(C).

Proposition 2.5. The full embedding Jκ : C → Shκ(C) preserves κ-limits, reflexive coequalisers and filtered κ ′-colimits.

Proof. Clearly Jκ preserves all limits that exist, so in particular κ-limits. It also preserves regular epimorphisms, since the
given topology contains the regular one, andwewill show below that it preserves filtered κ ′-colimits. It will then follow that
it preserves reflexive coequalisers too, since inC and in Shκ(C), wemay exploit (E1’) and (E2’) to construct such coequalisers
from finite limits, countable filtered colimits and coequalisers of equivalence relations, all of which are preserved by Jκ ; the
argument is given in precisely the form we need it in [3, Theorem 2.6].

It remains to show that Jκ preserves filtered κ ′-colimits. Observe that if (pk : Dk→ X | k ∈ K) is such a colimit inC, then
Jκ will preserve it just when every sheafCop

→ Set sends it to a limit in Set. So let F be a sheaf. Since the family (pk | k ∈ K)
is covering, we may identify FX with the set of matching families for this covering. In other words, if

Djk
djk //

cjk
��

Dj

pj
��

Dk pk
// X

is a pullback for each j, k ∈ K , then we may identify FX with the set
{x⃗ ∈ ΠkFDk | Fdjk(xj) = Fcjk(xk) for all j, k ∈ K}. (∗)

Under this identification, the canonical comparison map FX → lim FD is just the inclusion between these sets, seen as
subobjects of ΠkFDk, and so injective; it remains to show that it is also surjective. Thus we must show that each x⃗ ∈ lim FD
lies in (∗), or in other words, that Fdjk(xj) = Fcjk(xk) for each x⃗ ∈ lim FD and each j, k ∈ J . To this end, we consider the
category K ′ of cospans from j to k in K; since K is filtered and κ ′-small, it follows easily that K ′ is too. We define a functor
E : K ′ → C by sending each cospan f : j→ ℓ← k : g in K ′ to the apex of the pullback square

E(f , g)
uf ,g //

vf ,g

��

Dj

Df
��

Dk
Dg

// Dℓ

in C. A simple calculation shows that pk.vf ,g = pj.uf ,g , so that we have induced maps qf ,g := (uf ,g , vf ,g) : E(f , g) → Djk,
constituting a cocone q under E with vertex Djk. We claim that this cocone is colimiting; whereupon, by the preceding part
of the argument, the comparison FDjk → lim FE induced by q will be monic, and so the family (Fqf ,g | (f , g) ∈ K ′) jointly
monic. Thus in order to verify that Fdjk(xj) = Fcjk(xk), and so complete the proof, it will be enough to observe that for each
f : j→ ℓ← k : g in K ′, we have:

Fqf ,g(Fdjk(xj)) = Fuf ,g(xj) = Fuf ,g(FDf (xℓ)) = Fvf ,g(FDg(xℓ)) = Fvf ,g(xk) = Fqf ,g(Fcjk(xk)).

It remains to verify that q is colimiting. For this, let V : K ′ → K denote the functor sending a j, k-cospan to its central
object, and ι1 : ∆j→ V ← ∆k : ι2 the evident natural transformations. Now we have a commutative cube

E
u //

v

��

q

!!B
BB

BB
BB

∆Dj

Dι1

��

BB
BB

BB
B

BB
BB

BB
B

∆(Djk)
∆djk

//

∆cjk
��

∆(Dj)

∆pj

��

∆(Dk)
Dι2 //

BB
BB

BB
B

BB
BB

BB
B DV

pV

!!B
BB

BB
BB

∆(Dk)
∆pk

// ∆X
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in [K ′, C]; its front and rear faces are pullbacks, and by (E2’) will remain so on applying the functor colim : [K ′, C] → C.
To show that q is colimiting is equally to show that it is inverted by colim; for which, by the previous sentence, it is enough
to show that pV is likewise inverted. But K ’s filteredness implies easily that V : K ′ → K is a final functor, so that pV , like
p, is a colimiting cocone, and so inverted by colim as required. �

We thus have a full structure-preserving embedding C → Shκ(C) and, in order to apply Proposition 2.4, the only thing
left to verify is that Shκ(C) is in fact κ-algebraically exact. The key to doing so is the following proposition.

Proposition 2.6. If E is reflective in a presheaf category via a κ-continuous reflector, then E is κ-algebraically exact.

Proof. If C is small, then PC = [Cop, Set], and now the restricted Yoneda embedding PC → PPC admits a continuous
left adjoint PPC → PC, this being the multiplication at C of the pseudomonad P . Since Sκ ′(PC) is closed in PPC under
κ-limits, it follows by restriction that PC → Sκ ′(PC) admits a κ-continuous left adjoint; and so every presheaf category
is κ-algebraically exact. Now if E is reflective in the κ-algebraically exact [Cop, Set] via a κ-continuous reflector, then it is a
retract of [Cop, Set] in κ-CONTS, and so by a standard property of Kock–Zöberlein pseudomonads [11, Theorem 3.5], must
itself be κ-algebraically exact. �

Thus it is enough to show that Shκ(C) is reflective in [Cop, Set] via a κ-continuous reflector. This will be a consequence
of the following result, which may be found proven—though with ‘‘small’’ harmlessly replacing our ‘‘κ-small’’—in
[10, Theorem 4.2]; we shall not recall the details, since we shall not need them in what follows.

Proposition 2.7. A left exact reflector L : [Cop, Set] → E preserves all κ-small limits if and only if the covering sieves for the
corresponding topology are closed under κ-small intersections in [Cop, Set].

We are therefore required to show that any κ-small intersection of covering sieves for the above-defined topology on C
is again covering. Clearly it is sufficient to consider the case where the sieves participating in the intersection are generating
ones for the topology. We can decompose any such intersection of sieves as an intersection

i∈I

Si ∩

j∈J

Tj

where each indexing set I and J is κ-small, each sieve Si is generated by a regular epimorphism ei : Ai � X and each sieve Tj
is generated by a κ ′-small filtered colimit cocone ((qj)x : Dj(x)→ X | x ∈ Aj).

Now we can form the κ-small product Πiei : ΠiAi → ΠiX; by condition (E3’) this is a regular epimorphism in C, and by
regularity, so also is its pullback e : A→ X along the diagonal X → ΠiX . Clearly a map Z → X factors through e just when
it factors through each ei, and so the covering sieve S generated by e is the intersection


i Si.

In a similar manner, we can form the filtered category ΠjAj; since |J| < κ , and each
Aj

 < κ ′, we have also thatΠjAj
 < κ ′. Now on considering the diagram D : ΠjAj → C defined by D(xj | j ∈ J) = ΠjDj(xj), condition (E4’) asserts that

ΠjX is a colimit for it; so that on pulling back along the diagonal X → ΠjXj, we conclude that X is a colimit for the diagram
D′ : ΠjAj → C which sends (xj | j ∈ J) to the fibre product of the maps (qj)xj : Dj(xj)→ X . Now we see as before that the
covering sieve T generated by this filtered κ ′-colimit cocone is precisely


j Tj.

It follows that


i Si∩


j Tj = S∩T is a covering sieve, since covering sieves are always closed under finite intersections,
and this completes the proof of:

Proposition 2.8. If the small, κ-completeC with reflexive coequalisers and filtered κ ′-colimits satisfies (E1’)–(E4’), then it admits
a full structure-preserving embedding into a κ-algebraically exact category, and so is itself κ-algebraically exact.

It remains to prove Theorem 2.2 for categories of no matter what size. So let C be a category with κ-limits, reflexive
coequalisers and filtered κ ′-colimits, satisfying (E1’)–(E4’). We call a full, replete subcategory κ-closed if it is closed in C
under the limits and colimits just mentioned. Clearly, each small, κ-closed subcategory of C satisfies (E1’)–(E4’), and so by
the preceding proposition is κ-algebraically exact. Wemay now conclude that the same is true of C by way of the following
result.

Proposition 2.9. A κ-complete C admitting reflexive coequalisers and filtered κ ′-colimits is κ-algebraically exact so long as all
of its small κ-closed subcategories are.

Proof. Suppose that each κ-closed subcategory of C is κ-algebraically exact; wemust show that C is too, or in other words,
that V : C → Sκ ′(C) admits a κ-continuous left adjoint. To this end, consider the collection of ϕ ∈ Sκ ′(C) for which there
exists a small κ-closed J : D ↩→ C with ϕ lying in the essential image of the fully faithful Sκ ′(J) : Sκ ′(D) → Sκ ′(C). It is
easy to show that this collection contains the representables and is closed under κ-limits, reflexive coequalisers and filtered
κ ′-colimits, and so is all of Sκ ′(C). It follows that C → Sκ ′(C) admits a left adjoint, since each D → Sκ ′(D) does by
assumption.

To show that this left adjoint is moreover κ-continuous, consider a κ-small diagram X : I→ Sκ ′(C). For each I ∈ I we
can find a small κ-closed DI ⊂ C with XI in the essential image of Sκ ′(DI) → Sκ ′(C); now taking D to be the closure of
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I DI in C under κ-limits, reflexive coequalisers and filtered κ ′-colimits, we obtain another small κ-closed subcategory.

The diagram X factors up-to-isomorphism through the fully faithful Sκ ′(D)→ Sκ ′(C) as X ′ : I→ Sκ ′(D), say; and now by
assumption, the left adjoint of D → Sκ ′(D) preserves the limit of X ′, whence the left adjoint of C → Sκ ′(C) preserves that
of X , as required. �

This completes the proof of Theorem 2.2 for categories of any size; and now, as discussed previously, taking the
conjunction of all instances of this theorem as κ ranges over the small regular cardinals completes the proof of Theorem 1.2.
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