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Abstract
We give an account of Bousfield localisation and colocalisation for one-dimensional model
categories—ones enriched over the model category of 0-types. A distinguishing feature of
our treatment is that it builds localisations and colocalisations using only the constructions
of projective and injective transfer of model structures along right and left adjoint functors,
and without any reference to Smith’s theorem.
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1 Introduction

A (Bousfield) localisationof amodel categoryE is amodel structureE� on the sameunderlying
category with the same cofibrations, but a larger class of weak equivalences. If E is left
proper and combinatorial, one may construct a localisation from any set S of maps which
one wishes to become weak equivalences in E�; the fibrant objects of E� will be the S-local
fibrant objects of E—those which see each map in S as a weak equivalence—and the weak
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2 S. Balchin, R. Garner

equivalences of E�, the S-local equivalences—those which every S-local fibrant object sees
as a weak equivalence. The S-local equivalences and the original cofibrations determine the
other classes of the E�-model structure; the hard part is exhibiting the needed factorisations,
which is usually done using a subtle cardinality argument of Smith [4, Theorem 1.7].

This paper is the first step towards understanding localisations of combinatorial model
categories in a way which avoids Smith’s theorem, and instead uses only the constructions
of projective and injective liftings of model structures—that is, transfers along right and left
adjoint functors. It is only a first step since, for reasons to be made clear soon, we only
implement our idea here for the rather special class of one-dimensional model categories:
those which are enriched over the cartesian model category of 0-types. While homotopically
trivial, there are mathematically interesting examples of such model structures, and in this
context, our approach yields the following complete characterisation:

Theorem 26 If E is a left proper one-dimensional combinatorial model category, then
the assignation E� �→ (E�)c f yields an order-reversing bijection between combinatorial
localisations of E (ordered by inclusion of acyclic cofibrations) and full, replete, reflective,
locally presentable subcategories of Ec f (ordered by inclusion).

Here, (–)c f is the operation assigning to a model category its subcategory of cofibrant–
fibrant objects. Since our approach relies only on injective and projective liftings, it dualises
straightforwardly, giving the corresponding:

Theorem 36 If E is a right proper one-dimensional combinatorial model category, then
the assignation Er �→ (Er )c f yields an order-reversing bijection between combinatorial
colocalisations of E (ordered by inclusion of acyclic fibrations) and full, replete, coreflective,
locally presentable subcategories of Ec f (ordered by inclusion).

These results expand on the inquiry of [31], which characterises (co)localisations of dis-
crete model categories: ones whose weak equivalences are the isomorphisms. However, it
is our general approach to constructing (co)localisations, rather than the applications to the
one-dimensional setting, which is the main conceptual contribution of this paper, and it there-
fore seems appropriate to now sketch this approach in the context of a general combinatorial
model category E .

As model structures are determined by their cofibrations and their fibrant objects, a local-
isation of E can be determined by specifying its fibrant objects. So suppose given a class of
fibrant objects in E , which we call local, that we would like to form the fibrant objects of a
localisation; for example, given a set S of maps in E , we could take “local” to mean “S-local
fibrant”. We will construct the localisation at issue with reference to an adjunction

L
G

⊥ E
F

(1.1)

between E and a suitably-defined category of local objects L. Naively, we might try taking
L to be the full subcategory of E on the local objects; but since this subcategory is not
typically complete nor cocomplete, its inclusion functor into E will typically not have the
required left adjoint. So instead, we take L-objects to be E-objects endowed with algebraic
structure witnessing their locality, and take L-maps to be E-maps which strictly preserve this
structure. This algebraicity of the definition of L now ensures that it is a locally presentable
category, and that the forgetful functor to E has the desired left adjoint; this extends [26]’s
construction of an adjunction with algebraically fibrant objects. Note that there can be many
different ways of choosing the algebraic structure which witnesses locality, and not all of
these are appropriate; indeed, choosing the correct definition of L is the most subtle point in
our argument.
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Bousfield Localisation and Colocalisation of One-Dimensional… 3

Thereafter, the remainder of the argument is conceptually clear. We first projectively
transfer the givenmodel structure on E along the right adjointG : L → E , and then injectively
transfer back along F : E → L. Local presentability ensures that these transfers exist so long
as the requisite acyclicity conditions are satisfied (cf. Proposition 2 below). For the transfer
to L, we verify acylicity using a path object argument, since every object of L will be
fibrant; for the transfer back to E , acyclicity will be immediate so long asGF preserves weak
equivalences—which might be verified, for example, using left properness of E .

At this point, we have a newmodel structure E ′ on the underlying category of E , which has
more weak equivalences and cofibrations, and makes every local object fibrant. However, it
is not yet a localisation of E since the cofibrations need not be the same. Thus, the final step
is to note that, since CE ⊆ CE ′ andWE ⊆ WE ′ , we can use [13] tomix the model structures E
and E ′, obtaining a model structure E� whose cofibrations are those of E and in which every
local object is fibrant; under appropriate homotopical closure conditions on the class of local
objects, the E�-fibrant objects will be precisely the local ones.

In this way, we may construct localisations using only the tools of projective and injective
liftings, and of mixing of model structures. It turns out (cf. Proposition 5 below) that mixing
of model structures may be reduced in turn to liftings, so that we have a construction of
localisations from projective and injective liftings alone. Note that this approach does not
avoid the cardinality arguments involved in Smith’s theorem; rather, it pushes themelsewhere,
namely into the construction of injective liftings of model structures as detailed in [25]. In
particular, our approach gives no more of an explicit grasp on the classes of maps of a
localisation than the usual one. However, we believe there are still good reasons for adopting
it.

One advantage of our approach is that it dualises trivially to give a construction ofBousfield
colocalisations, wherein one enlarges the class of weak equivalences while fixing the class of
fibrations; this time, one starts from the colocal objects—those which should be the cofibrant
objects of the colocalised model structure—and constructs the desired colocalisation with
reference to an adjunction between E and a category of “algebraically colocal cofibrant
objects”.

Another positive consequence of our approach, and our original motivation for develop-
ing it, is that allows for an account of (co)localisation for the algebraic model structures
of Riehl [28]. These are combinatorially rich presentations of model categories in which,
among other things, (acyclic) fibrant replacement constitutes a monad on the category of
arrows, and (acyclic) cofibrant replacement a comonad; they have been used to derive non-
trivial homotopical results [2,7,12], and are of some importance in the homotopy type theory
project [34]. However, there is no account of localisation for algebraic model structures as
there seems to be no “algebraic” version of Smith’s theorem. On the other hand, there are
algebraic versions of injective and projective lifting [8, §4.5]; whence our interest. A potential
application of this would be to the study of localisation for model structures which, while not
cofibrantly generated in the classical sense, are cofibrantly generated in the algebraic sense;
see the discussion in [3].

As noted above, the subtlest point in our approach lies in choosing the algebraic structure
which constitutes the notion of “algebraically local object”. The key issue is whether one can
construct the required path objects in L, and this is sensitive both to the choice of L and the
nature of the model category E ; see [12,26] for some discussion of this point. This delicacy is
somewhat orthogonal to the main thrust of our argument, and so in this paper, we sidestep it
entirely by concentrating on the situation in which the property and the structure of locality
necessarily coincide. This is the setting of one-dimensional model structures, and this is why
we concentrate on this seemingly degenerate case.
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4 S. Balchin, R. Garner

In elementary terms, a model structure is one-dimensional when the liftings involved
in its factorisations are unique. Such model categories were introduced and investigated in
[27]; however, it was left open as to whether examples of such model structures arise in
mathematical practice. A subsidiary objective of this paper is to show that, in fact, this is the
case: for example, if A is a commutative ring, then there is a model structure on the category
[AlgfpA ,Set] of diagrams of finitely presented A-algebras whose fibrant objects are sheaves
on the big Zariski topos of A (i.e., generalised algebraic spaces over Spec A), and whose
cofibrant–fibrant objects are sheaves on the topological space Spec A.

We conclude this introduction with a short overview of the contents of the paper. In
Sect. 2 we recall the necessary model-categorical background on combinatoriality, lifting,
and mixing of model structures. In Sect. 3, we introduce one-dimensional model structures
and study their homotopical properties. Then in Sect. 4, we implement our general approach
to localisation in the context of one-dimensional model structures, by providing a set of
conditions which perfectly characterise the categories of fibrant objects in a localisation of
a one-dimensional model structure. In Sect. 5, we explain how matters are simplified by
the assumption of left properness, culminating in our first main result, Theorem 26; then in
Sect. 6 use this to recover the classical account of localisation at a given set of maps in a
left proper one-dimensional model structure. In Sect. 7, we dualise our theory to the case of
colocalisation for one-dimensional model structures, obtaining our secondmain Theorem 36;
and finally, in Sect. 8, we illustrate our results with a range of examples of one-dimensional
model structures.

2 Model-Categorical Background

Throughout the paper, we write (C,W,F) for a model structure with cofibrations C, weak
equivalencesW and fibrations F , and write T C = C ∩W and T F = F ∩W for the acyclic
cofibrations and fibrations. We assume our model categories to be locally small, complete
and cocomplete, and endowed with functorial factorisations; these induce functorial fibrant
and cofibrant replacements, which we write as η : 1 ⇒ R and ε : Q ⇒ 1. We write RLP(K)

or LLP(K) for the class of maps with the right or left lifting property with respect to a class
of maps K, and write U−1(K) for the inverse image of the class under a functor U .

Definition 1 Suppose that E is a category equipped with a model structure (C,W,F) and
that U : D → E .

• The projectively lifted model structure on D, if it exists, is the one whose weak equiva-
lences and fibrations are given by U−1(W) and U−1(F) respectively.

• The injectively lifted model structure on D, if it exists, is that whose cofibrations and
weak equivalences are given by U−1(C) and U−1(W) respectively.

The basic setting inwhich liftedmodel structures are guaranteed to exist is that of combina-
torial model categories. Recall that a model category is called combinatorial if its underlying
category is locally presentable [17], and its two weak factorisation systems (C, T F) and
(T C,F) are cofibrantly generated.

Proposition 2 Let E be a combinatorial model category, let D be a locally presentable cat-
egory, and let U : D → E .

(i) If U is a right adjoint, and the acyclicity condition LLP(U−1(F)) ⊂ U−1(W) holds,
then the projective lifting along U exists and is combinatorial.
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Bousfield Localisation and Colocalisation of One-Dimensional… 5

(ii) If U is a left adjoint, and the acyclicity condition RLP(U−1(C)) ⊂ U−1(W) holds, then
the injective lifting along U exists and is combinatorial.

Proof (i) follows from [19, Theorem 11.3.2] plus the fact that any set of maps in a locally
presentable category permits the small object argument; the argument for (ii) is due to [25],
but is given in the form we need in [3, Theorem 2.23]. 
�
Despite their surface similarity, the two parts of this result are sharply different from each
other. In (i), we obtain explicit choices of generating (acyclic) cofibrations forD by applying
F to the corresponding generators for E . In (ii), by contrast, it is typically impossible to write
down explicit sets of generating (acyclic) cofibrations for D; one merely knows that they
exist.

Note also the following result, which will be useful in the sequel. In its statement, an
accessible functor is one preserving κ-filtered colimits for a regular cardinal κ .

Proposition 3 If E is a combinatorial model category, then it admits a cofibrant replacement
functor Q and fibrant replacement functor R which are accessible.

Proof See [15, Proposition 2.3]. 
�
The use we make of this fact is encapsulated in the following standard result from the theory
of locally presentable categories.

Proposition 4 If A ⊆ E is a full reflective (resp., coreflective) subcategory and E is locally
presentable, then A is locally presentable if and only if the reflector R : E → E (resp., core-
flector Q : E → E) is accessible.

Proof The “only if” direction follows on observing that, by [17, Satz 14.6], any adjunction
between locally presentable categories induces both an accessible monad and an accessible
comonad. In the “if” direction, note that, in either case, the subcategory A is complete and
cocomplete, and so by [1, Theorem 2.47] will be locally presentable so as long as it is
an accessible category [24]. But A is the universal subcategory of E on which η : 1 ⇒ R
(resp., ε : Q ⇒ 1) becomes invertible, and so by [24, Theorem 5.1.6] is accessible since R
(resp., Q) is so. 
�

We now recall Cole’s result [13] on mixing model structures.

Proposition 5 Let (C1,W1,F1) and (C2,W2,F2) be combinatorial model structures on the
same category E . If F1 ⊆ F2 and W1 ⊆ W2, then there is a combinatorial mixed model
structure (Cm,Wm,Fm) on E with Fm = F1 and Wm = W2.

Proof Consider the combinatorial model structure (C,W,F) on E × E which in its first
component is given by (T C1, all,F1) and in its second by (C2,W2,F2). The diago-
nal � : E → E × E is a right adjoint between locally presentable categories, and we
have that �−1(F) = F1 ∩ F2 = F1 and �−1(W) = all ∩ W2 = W2. Thus, since
LLP(�−1(F)) = T C1 ⊆ W1 ⊆ W2 = �−1(W), the projectively lifted model structure
(Cm,Wm,Fm) exists, and has Wm = W2 and Fm = F1. 
�
The proof we give is less explicit than Cole’s; he constructs the required factorisations
directly rather than appealing to a lifting result. This allows him to avoid the assumption
of combinatoriality of the two starting model structures, but means that he does not derive it
for the mixed model structure either.
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6 S. Balchin, R. Garner

It is in fact easy to derive explicit generating sets for the mixed model structure from
ones for the two given model structures. Since Fm = F1, a generating set of mixed acyclic
cofibrations is given by any generating set for T C1; and since T Fm = F1 ∩ W2 = F1 ∩
F2 ∩ W2 = F1 ∩ T F2, a generating set of mixed cofibrations is given by the union of any
generating set for T C1 and any generating set for C2.

Cole’s construction of the mixed model structure dualises without difficulty. Our proof
also dualises by using injective rather than projective liftings. Once again, we must add the
assumption of combinatoriality of the input model structures, but gain it on the output side.
This time we cannot, in general, find explicit generating sets of maps for the mixed model
structure.

Proposition 6 Let (C1,W1,F1) and (C2,W2,F2) be combinatorial model structures on the
same category E . If C1 ⊆ C2 and W1 ⊆ W2, then there is a combinatorial mixed model
structure (Cm,Wm,Fm) on E with Cm = C1 and Wm = W2.

3 One-Dimensional Model Structures

Definition 7 Themodel category of 0-types is the category of sets endowedwith the cartesian
monoidal model structure (all, iso, all). A model category E is called one-dimensional if it
is enriched over the model category of 0-types.

The following result characterises the underlying weak factorisation systems of one-
dimensional model structures; for a yet more comprehensive list of characterisations, see
[30, Proposition 2.3].

Proposition 8 The following are equivalent for a weak factorisation system (L,R) on a
finitely complete and cocomplete category:

(i) Every L-map has the unique lifting property against each R-map;
(ii) If f : A → B is in L, then so is the codiagonal ∇ : B +A B → B;
(iii) If f : A → B is in R, then so is the diagonal � : A → A ×B A;
(iv) If f : A → B and g : B → C and f ∈ L, then g ∈ L iff g f ∈ L;
(v) If f : A → B and g : B → C and g ∈ R, then f ∈ R iff g f ∈ R.

Proof (i) ⇔ (ii) ⇔ (iii) by [9, § 4.5], while (i) ⇔ (iv) ⇔ (v) by [29, Satz 3]. 
�
We call a weak factorisation system satisfying these conditions orthogonal.

Proposition 9 The following are equivalent for a locally small model category E:
(i) E is one-dimensional;
(ii) The weak factorisation systems (T C,F) and (C, T F) of E are orthogonal.

Proof The model structure for 0-types on Set has no generating acyclic cofibrations, and
generating cofibrations {0 → 1, 2 → 1}. For any map f : A → B in E , its pushout tensor
with 0 → 1 in Set is f , while its pushout tensor with 2 → 1 is ∇ : B +A B → B. So E is
enriched over the model structure for 0-types if and only if both C and T C satisfy the closure
condition in Proposition 8(ii). 
�

By the standard properties of orthogonal factorisation systems [16], factorisations of maps
in a one-dimensional model category E are unique to within unique isomorphism. We also
have the following good behaviour of the full subcategories i : E f ↪→ E and j : Ec ↪→ E of
fibrant and cofibrant objects:
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Bousfield Localisation and Colocalisation of One-Dimensional… 7

Proposition 10 For any one-dimensional model category E , there are adjunctions

E f
i

⊥ E
R

Ec
j

� E .
Q

In particular, both Ec and E f are complete and cocomplete; if E is combinatorial, then they
are moreover locally presentable.

Proof Each Y ∈ E f lifts uniquely against each acyclic cofibration ηX : X → RX , whence
E(X , Y ) ∼= E f (RX , Y ), naturally in X and Y . Thus E f is reflective in E , and so complete
and cocomplete since E is; we argue dually for Ec. Finally, if E is combinatorial, then Ec and
E f are locally presentable by Propositions 3 and 4 . 
�

Moreover, we have the following homotopical properties:

Proposition 11 The following are true in a one-dimensional model category:

(i) Every map between (co)fibrant objects is a (co)fibration.
(ii) Q and R preserve and reflect weak equivalences.
(iii) R preserves cofibrations and inverts acyclic cofibrations.
(iv) Q preserves fibrations and inverts acyclic fibrations.
(v) Any weak equivalence between fibrant–cofibrant objects is an isomorphism.
(vi) There is a natural isomorphism QR ∼= RQ.
(vii) A map is a weak equivalence if and only if it is inverted by QR ∼= RQ.

Proof For (i), apply Proposition 8(iv) and (v) to composites 0 → A → B and A → B → 1.
(ii) is standard in any model category. For (iii), consider the square

A
ηA

f

RA

R f

B
ηB

RB .

(3.1)

Since ηA and ηB are (acyclic) cofibrations, if f is a cofibration, then so is R f by Proposi-
tion 8(iv). If f is moreover acyclic, then R f is both an acyclic cofibration and a fibration,
whence invertible. Now (iv) is dual to (iii). For (v), note that any weak equivalence between
cofibrant–fibrant objects is also a cofibration and a fibration, whence invertible. For (vi), note
that by (iii), QRX is fibrant and QηX : QX → QRX is an acyclic cofibration; so by the
uniqueness of the (T C,F)-factorisation of QX → 1, we must have QRX ∼= RQX . Finally,
(vii) follows from (ii) and (v) as QR ∼= RQ preserves and reflects weak equivalences. 
�

4 Localities for One-Dimensional Model Structures

We now begin to investigate the process of localisation for one-dimensional combinatorial
model categories. First we fix our terminology.

Definition 12 A combinatorial localisation of a combinatorial one-dimensional model cat-
egory E is a combinatorial one-dimensional model category E� with the same underlying
category, the same cofibrations, and at least as many acyclic cofibrations.
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8 S. Balchin, R. Garner

As in the introduction, a localisation E� of E is completely determined by its subcategory
(E�) f of fibrant objects. Our objective in this section is to show that, in the one-dimensional
combinatorial setting, the subcategories so arising are captured perfectly by the following
notion of homotopical locality.

Definition 13 A locality for a combinatorial one-dimensional model category E is a full
subcategory E� f ⊆ E f , whose objects we call local, such that:

(i) E� f is locally presentable and reflective in E via a reflector υ : 1 → R�;
(ii) If X , Y ∈ E f are weakly equivalent, then X is local just when Y is.

We call a locality homotopical if, in addition:

(iii) R� preserves weak equivalences.

Note that E f is itself a locality—indeed, the maximal one—and is homotopical by Proposi-
tion 11(ii).

Remark 14 The data for a homotopical locality resemble the input data for the Bousfield–
Friedlander approach to localisation [10, Theorem A.7]. Their setting also involves a right
properness axiom which ensures that the necessary factorisations can be constructed in an
elementary fashion; however, as noted in [32], this axiom can be dropped in the combina-
torial setting, at the cost of losing an explicit grasp on the factorisations. The axioms for a
homotopical locality above are a one-dimensional version of this more general form of the
Bousfield–Friedlander axioms.

The easier direction is that any localisation gives rise to a homotopical locality:

Proposition 15 Let E be a combinatorial one-dimensional model category, and let E� be a
combinatorial localisation of E . The subcategory (E�) f of E�-fibrant objects is a homotopical
locality for E .

Proof (E�) f ⊆ E f sinceE� hasmore acyclic cofibrations thanE ; it is of course full, replete and
reflective in E , and is locally presentable by Proposition 10. We next verify (iii). If f is an E-
weak equivalence, then it is an E�-weak equivalence, whence by Proposition 11(vii) inverted
by QR�. Since Q is also the cofibrant replacement for E , we conclude by Proposition 11(ii)
that R�( f ) is an E-weak equivalence. Finally, for (ii), let f : X → Y be a weak equivalence
in E f and consider the square:

X
f

υX

Y

υY

R�X
R� f

R�Y .

We must show υX is invertible just when υY is. But both are (acyclic) cofibrations in E�,
whence cofibrations in E , between E-fibrant objects; so they are invertible just when they are
E-weak equivalences. But R� preserves E-weak equivalences, so both horizontal maps are
E-weak equivalences, whence υX is an E-weak equivalence if and only if υY is. 
�

To show conversely that every homotopical locality E� f arises from a localisation, we
carry out the procedure outlined in the introduction: lifting the model structure from E to E� f

and back again, and mixing the result with the original model structure. Before doing so, we
establish some necessary properties of localities.
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Bousfield Localisation and Colocalisation of One-Dimensional… 9

Lemma 16 If E� f is a locality for E , then:
(i) Q preserves and reflects locality of fibrant objects;
(ii) Each υX : X → R�X is a cofibration;
(iii) R� preserves cofibrations.

Proof For (i), apply property (ii) of a locality to εX : QX → X . For (ii), we factor υX as
a cofibration f : X → P followed by an acyclic fibration g : P → R�X . Now P is fibrant
since R�X is, and R�X is local; so applying property (ii) of a locality to g, we conclude that
P is local. We can thus extend f : X → P to a map h : R�X → P with hυX = f ; now
υX = g f = ghυX , whence gh = 1, and so

X

υX

X

f

X

υX

R�X
h

P
g

R�X

exhibits υX as a retract of the cofibration f and so a cofibration. Finally, for (iii), apply (ii)
and Proposition 8(iv) to the naturality square for R� at a cofibration. 
�

We now show that the model structure on E lifts along the inclusion E� f → E .

Proposition 17 If E� f is a locality for the one-dimensional combinatorial E , then the model
structure on E restricts to one on E� f , with classes as follows:

• Cofibrations = LLP(maps inverted by Q);
• Acyclic cofibrations = isomorphisms;
• Fibrations = all maps;
• Acyclic fibrations = weak equivalences = maps inverted by Q.

The restricted model structure is one-dimensional and projectively lifts that on E .

Proof On taking either factorisation of a map between objects of E� f , the interposing object
clearly lies in E f , and is moreover local by Lemma 16(i). So the model structure restricts;
in particular, it is a projective lifting along E� f → E and so also one-dimensional. Since
E� f ⊆ E f , Proposition 11(i) gives the characterisation of the restricted fibrations and acyclic
cofibrations. The restrictedweak equivalences therefore equal the restricted acyclic fibrations;
and as every local object is fibrant, these are by Proposition 11(ii), (iii) and (v), exactly the
maps inverted by Q. 
�

And now we lift back in the other direction:

Proposition 18 Let E� f be a homotopical locality for E . The restricted model structure on
E� f lifts injectively along R� : E → E� f ; this new model structure E ′ is one-dimensional,
with acyclic cofibrations the maps inverted by R�, and with fibrant objects the local objects.
The identity functor E → E ′ is left Quillen.

Proof By assumption, E� f is locally presentable and R� is a left adjoint. Now as R� preserves
weak equivalences by assumption and cofibrations by Lemma 16(iii), we haveW ⊆ R−1

� (W)

and C ⊆ R−1
� (C), whence RLP(R−1

� (C)) ⊆ RLP(C) = T F ⊆ W ⊆ R−1
� (W). Thus by

Proposition 2, the injectively lifted model structure E ′ exists, and is one-dimensional by
Proposition 8(iv); since E ′ has more cofibrations and acyclic cofibrations than E , the identity
E → E ′ is left Quillen. The characterisation of the acyclic cofibrations follows since the E� f -
acyclic cofibrations are the isomorphisms. Finally, an object is E ′-fibrant if and only if it is
orthogonal to all maps inverted by the reflector R� : E → E� f , if and only if it is in E� f . 
�
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10 S. Balchin, R. Garner

Finally, we mix this new model structure with our original one:

Proposition 19 If E� f is a homotopical locality for E , then there exists a combinatorial
localisation E� of E such that (E�) f = E� f .

Proof The model structure E ′ of the last result has more cofibrations and weak equivalences
than E ; so we can mix with E to obtain a model structure E� with the cofibrations of E and the
weak equivalences of E ′. It remains to show (E�) f = E� f . As the E ′-fibrant objects are the
local ones, and as T C� ⊆ T C′, each local object is E�-fibrant. Conversely, if X is E�-fibrant,
then since υX : X → R�X is in T C�—being both an E-cofibration and inverted by R�—the
identity X → X extends to a retraction p : RX → X for υX . Now since υX pυX = υX also
υX p = 1 and so X is local as an isomorph in E f of the local RX . 
�

Putting together the preceding results, we obtain:

Theorem 20 Let E be a one-dimensional combinatorial model category. The assignation
E� �→ (E�) f yields an order-reversing bijection between combinatorial localisations of E
(ordered by inclusion of their acyclic cofibrations) and homotopical localities for E (ordered
by inclusion of their subcategories of local objects).

Proof The assignation is well-defined by Proposition 15, clearly order-reversing, and sur-
jective by Proposition 19. Moreover, two localisations of E which induce the same localities
must have isomorphic cofibrant–fibrant replacement functors, whence by Proposition 11(vii)
the same weak equivalences; and so must coincide. 
�

5 Left Properness

Localisation of model structures is often carried out under the assumption of left properness;
recall that a model structure is called left proper if the pushout of a weak equivalence along
a cofibration is a weak equivalence. We now explain the significance of this condition in the
one-dimensional context, by proving:

Proposition 21 If E is one-dimensional, combinatorial and left proper, then any locality for
E is homotopical.

Before proving this, we establish some preparatory lemmas. In stating the first, note that,
as a special case of Proposition 17, any one-dimensional model structure on a category E
restricts to a one-dimensional model structure on E f .

Lemma 22 A one-dimensional model category E is left proper if and only if the restricted
model structure on E f is left proper.

Proof R : E → E f preserves pushouts, weak equivalences and cofibrations; so if E f is left
proper, then the cobase change in E of a weak equivalence along a cofibration is sent by R
to another such cobase change in E f and so, by left properness, to a weak equivalence. As R
reflects weak equivalences, this shows E is left proper.

Conversely, if E is left proper, then the cobase change in E f of a weak equivalence along
a cofibration may be calculated by forming the cobase change in E—which yields a weak
equivalence by left properness—and then applying R—which yields a weak equivalence
since R preserves such. This shows E f is left proper. 
�
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Bousfield Localisation and Colocalisation of One-Dimensional… 11

Remark 23 It follows that any localisation of the left proper one-dimensional E is left proper.
For indeed, by copying the “only if” direction of the precedingproof,we see that the restriction
of the model structure E to (E�) f is left proper. But this model structure is equally the
restriction of the model structure E� to (E�) f and so by the “if” direction of the preceding
result, E� is also left proper.

Lemma 24 If E� f is a locality for the left proper E , then for any weak equivalence f : X → Y
between fibrant objects, the following is a pushout in E f :

X
f

υX

Y

υY

R�X
R� f

R�Y

(5.1)

Proof Let us form the pushout

X
f

υX

Y

p

R�X
q

P

in the left proper E f . Since f is a weak equivalence and υX is a cofibration, q is also a weak
equivalence in E f ; thus since R�X is local, P is too. Moreover, since υX has the left lifting
property against any local object, so does its pushout p; whence p : Y → P is a reflection of
Y into E� f . As υY : Y → R�Y is another such reflection, the unique induced map P → R�Y
is thus invertible. 
�

We can now give:

Proof of Proposition 21 Let E� f be a locality. If g : X → Y is a weak equivalence in E ,
then Rg is one in E f , and so taking f = Rg in (5.1) shows that R�Rg, as a pushout of a
weak equivalence along a cofibration in the left proper E f , is also a weak equivalence. Now
ηX : X → RX and ηY : X → RY have the unique left lifting property against every (fibrant
and so every) local object, and as such are inverted by R�; whence

R�g = R�X
R�ηX−−−→ R�RX

R�Rg−−−→ R�RY
(R�ηY )−1

−−−−−−→ R�Y

is a composite of weak equivalences and so a weak equivalence. 
�
Wehave thus shown that, in the left proper context,we candrop themodifier “homotopical”

from the statement of Theorem 20: that is, localisations of the left proper E correspond to
localities on E . The value of this is that localities are rather easy to construct, by virtue of:

Proposition 25 Let E be a combinatorial one-dimensional model category. The assignation
E� f �→ E� f ∩Ec yields an order-preserving bijection between localities for E and full, replete,
reflective, locally presentable subcategories of Ec f (where in each case the order is given by
inclusion of subcategories).

Proof If E� f is a locality, then by Lemma 16(iii) its reflector R� maps Ec f into E� f ∩ Ec,
so that E� f ∩ Ec is reflective in Ec f via R�. Moreover, since E� f is reflective in E f via R�,
the functor R� : E f → E f is accessible by Proposition 4. Since Ec f is coreflective in E f and
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12 S. Balchin, R. Garner

hence closed under colimits, R� : Ec f → Ec f is also accessible and hence E� f ∩ Ec is locally
presentable by Proposition 4 again.

This shows that E� f �→ E� f ∩ Ec is well-defined, and it is injective since for any locality,
the objects in E� f are, by Lemma 16(i), those X ∈ E f for which QX ∈ E� f ∩ Ec. To show
surjectivity, let E�c f ⊆ Ec f be reflective and locally presentable. Form the pullback

E� f
i ′

Q′

E f

Q

E�c f
i Ec f ;

so objects of E� f are objects X ∈ E f with QX ∈ E�c f . Since QX ∼= X whenever X ∈ Ec,
we have E� f ∩ Ec = E�c f , and so will be done so long as E� f is a locality.

To check condition (i) of Definition 13, note that E�c f , Ec f and E f are locally presentable,
i and Q are right adjoints, and i is an isofibration; so by [6, Theorem 2.18], E� f is also locally
presentable, and i ′ is also a right adjoint. So E� f is reflective in E f , and E f is reflective in E ,
whence E� f is reflective in E . To check Definition 13(ii), note that if f : X → Y is a weak
equivalence in E f , then Q f : QX → QY is invertible in Ec f ; since E�c f is replete in Ec f , we
thus have that X ∈ E� f iff QX ∈ E�c f iff QY ∈ E�c f iff Y ∈ E� f . 
�

Combining this with Theorem 20 and Proposition 21, we therefore obtain:

Theorem 26 If E is a left proper one-dimensional combinatorial model category, then the
assignation E� �→ (E�)c f yields an order-reversing bijection between combinatorial locali-
sations of E (ordered by inclusion of acyclic cofibrations) and full, replete, reflective, locally
presentable subcategories of Ec f (ordered by inclusion).

6 Localisation at a Set of Maps

In practice, one often constructs localisations of a left proper model category starting from
a set of maps which one wishes to make into weak equivalences. We now use the theory of
the preceding section to reproduce this construction in the one-dimensional context. First we
recall the basic definitions:

Definition 27 If E is a model category enriched over the monoidal model category V , then
the derived hom of E is the functor

Eh : Eop × E E(Q–,R–)−−−−−−→ V Ho−−→ Ho V .

For enrichment over the model structure for 0-types on Set, the functor Ho : Set →
Ho Set is the identity, so that for a one-dimensional model category E we have Eh(A, B) =
E(QA, RB).

Definition 28 If E is a model V-category, X ∈ E and f ∈ E(A, B), then we write f ⊥h X
if Eh( f , X) : Eh(B, X) → Eh(A, X) is invertible. Given a class of maps S in E , we now say
that:

• An object X ∈ E is S-local if f ⊥h X for all f ∈ S;
• A map f ∈ E is an S-local equivalence if f ⊥h X for all S-local X ∈ E .

123



Bousfield Localisation and Colocalisation of One-Dimensional… 13

Remark 29 The derived hom Eh has the property of sending weak equivalences in each
variable to isomorphisms; in particular, we have

Eh(A, B) ∼= Eh(A, QB) ∼= Eh(A, RB) and Eh(A, B) ∼= Eh(RA, B) ∼= Eh(QA, B) .

It follows that Q and R preserve and reflect both S-local objects and S-local equivalences.
As a consequence, in showing that a map f is an S-local equivalence, it suffices to check
that f ⊥h X for each cofibrant–fibrant S-local X .

Remark 30 If E� is any combinatorial localisation of E whatsoever, then each E-weak equiv-
alence is an E�-weak equivalence. In particular, both η : 1 → R and ε : Q → 1 are pointwise
E�-weak equivalences so that, by the two-out-of-three property for E�-weak equivalences, Q
and R preserve and reflect E�-equivalences.

Theorem 31 Let E be combinatorial, left proper and one-dimensional. For any set of maps
S of E , there exists a combinatorial localisation E� of the model structure E for which:

• The fibrant objects are the S-local E-fibrant objects;
• The weak equivalences are the S-local equivalences.

Moreover, every combinatorial localisation of E arises thus.

Proof Given a set S of maps, let E�c f ⊆ Ec f be the full subcategory of S-local fibrant–
cofibrant objects. Note that X ∈ Ec f is in E�c f just when Ec f (QR f , X) is invertible for each
f ∈ S. Thus, on taking S′ = {QR f : f ∈ S} and

I = J = S′ ∪ {∇g : B +A B → B | g : A → B ∈ S′}
as generating (acyclic) cofibrations, the small object argument yields a combinatorial
one-dimensional model structure on Ec f with subcategory of fibrant objects E�c f . So by
Proposition 10, E�c f is reflective in Ec f and locally presentable.

Now, applying Theorem 26 to E�c f yields a localisation E� of E with (E�)c f = E�c f .
As Q preserves and reflects both the E�-fibrancy and the S-locality of E-fibrant objects, the
E�-fibrant objects are the S-local E-fibrant ones. Moreover, the E�-weak equivalences in Ec f
are the maps inverted by the reflector into E�c f , which are those f such that Ec f ( f , X) ∼=
Eh( f , X) is invertible for all X ∈ E�c f—which, by Remark 29, are exactly the S-local
equivalences in Ec f . Since, by Remark 29 and Remark 30, QR preserves and reflects both
S-local equivalences and E�-weak equivalences, it follows that the E�-weak equivalences are
the S-local equivalences.

Finally, if E� is any localisation of E , then by Theorem 26, (E�)c f is locally presentable
and reflective in Ec f . Thus, by [1, Theorem 1.39], there is a set S of maps in Ec f so that
(E�)c f comprises those X ∈ Ec f for which Ec f (–, X) ∼= Eh(–, X) inverts each g ∈ S—in
other words, the S-local cofibrant–fibrant objects. As a model structure is determined by its
cofibrations and cofibrant–fibrant objects, E� is thus the localisation of E at S. 
�

7 Colocalisation

As noted in the introduction, an advantage of our approach is that everything we have done
adapts without fuss from the case of localisations to colocalisations.

Definition 32 A combinatorial colocalisation of a combinatorial one-dimensional model
category E is a combinatorial one-dimensional model category Er with the same underlying
category, the same fibrations, and at least as many acyclic fibrations.
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14 S. Balchin, R. Garner

The arguments of Sect. 4 dualise immediately to show that colocalisations correspond to
homotopical colocalities:

Definition 33 A colocality for a combinatorial one-dimensional model category E is a full
subcategory Erc ⊆ Ec, whose objects we call colocal, such that:

(i) Erc is locally presentable and coreflective in E via a coreflector ξ : Qr → 1;
(ii) If X , Y ∈ Ec are weakly equivalent, then X is colocal just when Y is.

We call a colocality homotopical if, in addition:

(iii) Qr preserves weak equivalences.

Theorem 34 Let E be a one-dimensional combinatorial model category. The assignation
Er �→ (Er )c yields an order-reversing bijection between combinatorial colocalisations of
E (ordered by inclusion of their fibrations) and homotopical colocalities for E (ordered by
inclusion of their subcategories of colocal objects).

Now the arguments of Sect. 5 dualise to show that every colocality for the right proper
one-dimensional combinatorial E is homotopical. The analogue of Proposition 25, however,
requires a proof which is not exactly dual, and which we therefore give in more detail:

Proposition 35 Let E be a combinatorial one-dimensional model category. The assignation
Erc �→ Erc ∩ E f yields an order-preserving bijection between colocalities for E and full,
replete, coreflective, locally presentable subcategories of Ec f (where in each case the order
is given by inclusion of subcategories).

Proof The coreflectivity of Erc ∩ E f in Ec f is dual to before. For its local presentability, as
Erc is coreflective in Ec via Qr , Proposition 4 implies that Qr : Ec → Ec preserves λ-filtered
colimits for some λ; and as Ec f is reflective in Ec, it is by Proposition 4 closed in Ec under
κ-filtered colimits for some κ � λ. So Qr : Ec f → Ec f preserves κ-filtered colimits, and so
Erc ∩ E f is locally presentable by Proposition 4. Thus Erc �→ Erc ∩ E f is well-defined, and it
is injective as before; for surjectivity, given Erc f ⊆ Ec f coreflective and locally presentable,
we form the pullback

Erc
j ′

R′

Ec

R

Erc f
j

Ec f ;

now the previous argument will carry over, mutatis mutandis, so long as Erc is locally pre-
sentable and j ′ has a right adjoint. Since R and j are left adjoint functors between locally
presentable categories, this follows like before but now appealing to Theorem 3.15, rather
than Theorem 2.18, of [6]. 
�

Putting these results together, we now obtain:

Theorem 36 If E is a right proper one-dimensional combinatorial model category, then
the assignation Er �→ (Er )c f yields an order-reversing bijection between combinatorial
colocalisations of E (ordered by inclusion of acyclic fibrations) and full, replete, coreflective,
locally presentable subcategories of Ec f (ordered by inclusion).

Analogously to Sect. 6, one often constructs colocalisations of a right proper model cat-
egory from a set of objects which generate the colocal ones under homotopy colimits. We
now rederive this result in the one-dimensional setting.
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Definition 37 Given a model V-category E , an object X ∈ E and a map f ∈ E(A, B), we
write X ⊥h f if Eh(X , f ) : Eh(X , A) → Eh(X , B) is invertible. Given a class of objects K
in E , we now say that:

• A map f ∈ E is a K -colocal equivalence if X ⊥h f for all X ∈ K ;
• An object X ∈ E is K -colocal if X ⊥h f for all K -colocal equivalences f ∈ E .

Theorem 38 Let E be combinatorial, right proper and one-dimensional. For any set of objects
K in E , there exists a combinatorial colocalisation Er of the model structure E for which:

• The cofibrant objects are the K -colocal E-cofibrant objects;
• The weak equivalences are the K -colocal equivalences.

Moreover, every combinatorial colocalisation of E arises thus.

Proof Given a set K of objects, let Erc f ⊆ Ec f be the full subcategory of K -colocal fibrant–
cofibrant objects. Taking K ′ = {QRX : X ∈ K } and taking

I = J = {0 → Y : Y ∈ K ′} ∪ {∇ : Y + Y → Y | Y ∈ K ′} , (7.1)

we obtain by the small object argument a combinatorial one-dimensional model structure
on Ec f with acyclic fibrations the K -colocal equivalences in Ec f , and so, by the dual of
Remark 29, with cofibrant objects the K -colocal objects in Ec f . Thus, by Proposition 10,
Erc f is coreflective in Ec f and locally presentable, and so applying Theorem 36 to Erc f yields
a colocalisation Er of E with (Er )c f = Erc f .

The same argument as previously shows that the Er -cofibrant objects are the K -colocal
E-cofibrant ones. Moreover, the Er -weak equivalences in Ec f are the maps inverted by the
coreflector into Erc f , which are those f such that Ec f (X , f ) ∼= Eh(X , f ) is invertible for all
X ∈ Erc f . By the dual of Remark 29, these are exactly the K -colocal equivalences in Ec f ; so
arguing as before, the Er -weak equivalences are the K -colocal equivalences.

Finally, if Er is any colocalisation of E , then by Theorem 36, (Er )c f is locally presentable
and coreflective in Ec f . Since (Er )c f is locally presentable, it has a small full subcategory
A whose colimit-closure in (Er )c f is the whole category; thus, since (Er )c f is closed in Ec f
under colimits, the colimit-closure of A in Ec f is (Er )c f . Now let K = obA. The K -colocal
objects in Ec f comprise a coreflective subcategory, which is colimit-closed, and so includes
every object in (Er )c f . On the other hand, each K -colocal object is a retract of an I -cell
complex with I as in (7.1), so constructible from objects in A via colimits, and so in (Er )c f .
So the subcategory of K -colocal objects in Ec f is precisely (Er )c f . As a model structure is
determined by its fibrations and cofibrant–fibrant objects, Er is thus the colocalisation of E
with respect to K . 
�

8 Examples

We conclude this paper by describing some examples of one-dimensional model categories
obtained via Bousfield (co)localisation. While the one-dimensionality means that there is
no real homotopy theory, we can at least find examples in which the fibrant, cofibrant or
fibrant–cofibrant objects are mathematically interesting.

As a first step, we may apply Theorem 26 to see that combinatorial localisations of the
discretemodel structure on a locally presentable category E correspond bijectively with full,
replete, reflective, locally presentable subcategories of E ; this recovers Theorem 4.3 of [31].1

1 Or rather, its restriction to the combinatorial case; when starting from a discretemodel structure, it is possible
to construct (co)localisations under rather weaker assumptions than combinatoriality.
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16 S. Balchin, R. Garner

The localised model structure corresponding to the subcategory B is obtained by lifting the
discrete model structure on B injectively along the reflector R : E → B. This model structure
is always left proper, since every object is cofibrant, but with an eye towards subsequent
colocalisation, it will be useful to know when it is also right proper.

Definition 39 A reflection V : B � E : F is called semi-left-exact if the reflector F : E → B
preserves pullbacks along maps in the essential image of V .

This definition originates in Section 4 of [11]; the following result, describing the relation
with right proper model structures, was first observed in [30].

Lemma 40 A localisation of the discrete model structure on the locally presentable E is right
proper if and only if the reflection i : E� f � E : R� is semi-left-exact.

Proof The acyclic fibrations of the localised model structure are the isomorphisms, whence
the weak equivalences are the acyclic cofibrations; so right properness is the condition that
T C-maps are stable under pullback along F-maps. Since the acyclic cofibrations are equally
the maps inverted by R�, its (T C,F)-factorisation system is, in the terminology of [11], the
reflective factorisation system corresponding to the subcategory E� f ; now Theorem 4.3 of
ibid. proves that T C-maps are stable under pullback along F-maps just when the reflection
is semi-left-exact. 
�

Putting this together with Theorem 36, we get:

Proposition 41 Let A, B and E be locally presentable. For any semi-left-exact reflection
i : B � E : R and coreflection j : A � B : Q there is a one-dimensional model structure on
E with fibrant objects those in the essential image of i , with cofibrant objects those X ∈ E
such that RX is in the essential image of j , and with cofibrant–fibrant objects those in the
essential image of i j .

Dually, we can construct a model structure on E from a semi-right-exact coreflection
j : B � E : Q together with a reflection i : A � B : R by first colocalising and then localis-
ing.

With these results in hand, we are now ready to give some examples. It is readily checked
that all of the categories we deal with are locally presentable, and so wewill make nomention
of this in what follows.

Example 42 Let A be a commutative ring, and let Zar(A) denote the big Zariski topos of
A. That is, Zar(A) the category of sheaves on the dual of the category AlgfpA of finitely
presentable A-algebras, with the topology defined by surjective families of Zariski open
inclusions. Sheafification gives a (semi-)left-exact reflection

Zar(A) ⊥ [AlgfpA ,Set] . (8.1)

Now let zar(A) denote the small Zariski topos of A: the category of sheaves on the dual
of the subcategory LocA ⊆ AlgfpA on the basic Zariski opens of A (i.e., the localisations of A
at a single element) under the restricted Zariski topology. The inclusion j : LocA → AlgfpA
is fully faithful, left exact, and preserves and reflects covers; so by [21, Example C2.3.23]
there is a coreflection

zar(A) � Zar(A) (8.2)
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with right adjoint given by restriction along j and left adjoint by left Kan extension followed
by sheafification. More concretely, the left adjoint sends X ∈ zar(A) to the functor of points
of the A-scheme p : �X → Spec A obtained by glueing Zariski open subschemes of Spec A
in the manner specified by X . As such, we can see the image of this left adjoint as comprising
the “local homeomorphisms” over Spec A.

Applying Proposition 41 to (8.1) and (8.2), we thus have a model structure on [AlgfpA ,Set]
with fibrant objects the big Zariski sheaves and with as cofibrant–fibrant objects, the small
Zariski sheaves seen as local homeomorphisms over Spec A. The general fibrant objects are
those functors of points AlgfpA → Set whose sheafification lands in zar(A) ⊆ Zar(A).

Example 43 Let k be an algebraically closed field, and let LocArtk ⊆ AlgfpA denote the full
subcategory on the local Artinian k-algebras. The topology on the dual of LocArtk induced
from theZariski topology is easily seen to bediscrete, so that the category of sheaves thereon is
equally the category of presheaves; now, as in the preceding example,we induce a coreflection

[LocArtk,Set] � Zar(k) (8.3)

whose right adjoint has a further right adjoint given by right Kan extension along the inclusion
LocArtk ⊆ AlgfpA . It follows that this coreflection is semi-right-exact.

The linear duals of local Artinian k-algebras are the cocommutative k-coalgebras which
are finite-dimensional and irreducible: that is, contain a unique grouplike element. By [33,
Corollary 8.0.7], any cocommutative k-coalgebra is the direct sum of irreducible ones, and
by [33, Theorem 2.2.1], any irreducible k-coalgebra is the union of its (irreducible) finite-
dimensional subcoalgebras. It follows that the linear duals of local Artinian k-algebras are
dense in the (cocomplete) category k-Cocomm of cocommutative coalgebras, and so we
have a reflection

k-Cocomm ⊥ [LocArtk,Set] . (8.4)

Applying the dual of Proposition 41 to (8.3) and (8.4), we thus have a model structure
on the big Zariski topos of k whose cofibrant objects are the colimits in Zar(k) of the
spectra of local Artinian k-algebras, and whose cofibrant–fibrant objects are cocommutative
k-algebras; the inclusion into Zar(k) identifies these with the filtered colimits of the spectra
of Artinian k-algebras. The general fibrant objects are Zariski sheaves X satisfying a form of
“infinitesimal linearity” [22] which is satisfied, for example, by any scheme over Spec(k).
Among other things, this infinitesimal linearity ensures the set of tangent vectors Te(X)

to a k-valued point e : Spec(k) → X—that is, the set of extensions of e through the map
Spec(k) → Spec(k[ε]/ε2)—has the structure of a k-vector space, which is moreover a Lie
algebra if e is the neutral element for a group structure on X .

Example 44 Let X be a connected, locally connected and semi-locally simply connected
topological space. As for any space, we have the left exact reflection

Sh(X) ⊥ [O(X)op,Set]
of presheaves into sheaves. Now letU be a universal covering space for X , seen as an object
in Sh(X), let π1(X) = Sh(X)(U ,U ) be the fundamental group, and let j : π1(X) → Sh(X)

be the inclusion of the full subcategory onU . By standard properties of covering spaces, the
cocontinuous extension j! : π1(X)-Set → Sh(X) of j is fully faithful and has as essential
image the covering spaces over X . In particular, we have a coreflection

π1(X)-Set � Sh(X)
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with right adjoint sending a sheaf S to the set Sh(X)(U , S) with π1(X)-action induced from
U . So applying Proposition 41, we have a model structure on [O(X)op,Set] whose fibrant
objects are sheaves on X , and whose cofibrant–fibrant objects are π1(X)-sets, identified with
the corresponding covering spaces. General cofibrant objects are presheaves whose sheaf of
local sections is a covering space.

Example 45 The preceding example arose by colocalising the model structure for sheaves
on [O(X)op,Set] at the single object U given by the universal covering space; however, if
X is not locally semi-locally simply connected, then U need not exist. However, we can
instead take the colocalisation at the set K of all (isomorphism-class representatives) of finite
covering spaces; we then obtain a model structure on [O(X)op,Set] with sheaves as fibrant
objects, and cofibrant–fibrant objects the continuous G-sets for G the profinite completion
of π1(X).

Example 46 Generalising Example 44 in a different direction, we can construct a model
structure on the category [O(X)op,Vectk] of presheaves of k-vector spaces on the connected,
locally connected and semi-locally simply connected X whose fibrant objects are the sheaves
of k-vector spaces and whose category of cofibrant–fibrant objects is the category of k-
linear representations of π1(X), with these being identified in [O(X)op,Vectk] with the
corresponding local systems.

Example 47 Let X be a quasi-compact quasi-separated scheme, and let Psh(OX ) and
Sh(OX ) be the categories of presheaves of OX -modules and sheaves of OX -modules.
The left exact reflection between sheaves and presheaves induces a left exact reflection
Sh(OX ) � Psh(OX ). Furthermore, the subcategory QCoh(OX ) ⊆ Sh(OX ) of quasico-
herent sheaves of OX -modules is coreflective by [5, Lemma II.3.2]. We thus have a model
structure on the category of presheaves ofOX -modules whose fibrant objects are the sheaves
of OX -modules, and whose cofibrant–fibrant objects are the quasicoherent sheaves.

Example 48 Recall that, if G is a topological group, then a continuous G-set is a set X
endowed with an action G × X → X which is continuous for the discrete topology on X ;
this is equally the condition that the stabiliser of each x ∈ X is an open subgroup of G. It
follows easily that there is a coreflection

Cts-G-Set � G-Set

between G-sets and continuous G-sets, where the right adjoint c sends a G-set X to the
sub-G-set cX = {x ∈ X : Stabx is open in G}. The counit map is, of course, simply the
inclusion, and it follows easily from this description that the coreflector preserves pushouts
along maps between continuous G-sets; so this adjunction is semi-right-exact.

Now let N be an open normal subgroup ofG. The category of continuousG/N -sets can be
identified with the full subcategory of continuous G-sets in which each element is stabilised
by (at least) N , and in fact we have a reflection

Cts-G/N -Set ⊥ Cts-G-Set

where the left adjoint quotients out a continuous G-set by the equivalence relation x ∼ x ′
iff Nx = Nx ′. We thus have a model structure on G-Set whose cofibrant objects are the
continuous G-sets and whose cofibrant–fibrant objects are the continuous G/N -sets. The
general fibrant objects are those G-sets in which every element with an open stabiliser is
stabilised by at least N .
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Example 49 Let �3 denote the full subcategory of � on [0], …, [3], and let sSet3 =
[�op

3 ,Set]. Left Kan extension, restriction and right Kan extension along the inclusion
�3 ⊆ � gives a chain of adjoints sk3 � tr3 � cosk3 : sSet3 → sSet with both sk3 and
cosk3 fully faithful. In particular, sk3 : sSet3 � sSet : tr3 is a semi-right-exact coreflection.
Now, as the data and axioms for a category only involve at most three composable arrows,
the truncated nerve tr3N : Cat → sSet → sSet3 is still fully faithful, and has a left adjoint
L since N and tr3 do. So we also have a reflection tr3N : Cat � sSet3 : L .

So by the dual of Proposition 41, we have a model structure on sSet whose cofibrant
objects are the 3-truncated simplicial sets, andwhose subcategory of fibrant–cofibrant objects
is equivalent to Cat. However, this equivalence does not identify a category in the usual way
with its nerve, but rather with the 3-skeleton of its nerve. Indeed, the cofibrant–fibrant objects
are simplicial sets X which are 3-truncated and satisfy the restricted Segal condition that the
spine projections

X2 → X1 ×X0 X1 and X3 → X1 ×X0 X1 ×X0 X1 (8.5)

are isomorphisms: in other words, the 3-skeleta of nerves of categories. More generally, the
fibrant objects of this model structure are simplicial sets X , not necessarily 3-truncated, for
which the Segal maps in (8.5) are invertible.

Example 50 Let E denote the category of small, strictly symmetric, strictly monoidal cate-
gories enriched over abelian groups. There is a full embedding of the category of commutative
monoids into E as discrete categories, and this has a right adjoint given by taking the set of
objects. This right adjoint is clearly cocontinuous, and so we have a semi-right-exact core-
flection

CMon � E

On the other hand, we have the well-known construction of the Grothendieck group of a
commutative monoid, giving a reflection

Ab ⊥ CMon .

We therefore have a model structure on E whose cofibrant objects are commutative monoids
and whose cofibrant–fibrant objects are abelian groups. The fibrant objects are the small,
strictly symmetric, strictly monoidalAb-categories (C,⊗, I ) in which every object is strictly
invertible for the tensor product ⊗. Such categories C with abelian group of objects M can
be identified2 with M-graded commutative rings C , via the correspondence

C(x, y) ↔ Cy⊗x−1 .

Example 51 Let T be any finitary algebraic theory, such as the theory of monoids, or groups,
or rings, or k-vector spaces, and so on. In each case, there is a category with finite products
T—the Lawvere theory [23] associated to T —whose objects are the natural numbers, and
for which finite-product-preserving functors T → E into any category with finite products
are equivalent to T -models in E .

Now consider any one of the semi-right-exact coreflections i : A � E : Q from the above
examples (i.e., from Examples 43, 48, 49 or 50). Postcomposition with Q and i induces a
semi-right-exact coreflection on functor categories

AT

iT
� ET

QT

2 The second author learnt of this correspondence from James Dolan.
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On the other hand, the category FP(T,A) of finite-product-preserving functors T → A is
reflective in AT; and so, applying the dual of Proposition 41, we obtain a model structure
on ET whose cofibrant objects are functors T → A and whose fibrant–cofibrant objects are
T -models inA. The general fibrant objects are functors T → E whose postcomposition with
Q : E → A preserves finite products; these are equally those functorsT → E which preserve
finite products up to a map which is inverted by Q.

Let us conclude the paper by taking stock of the preceding examples. As we explained
in the introduction, this paper is really a prelude to further work explaining Bousfield
(co)localisation of general model structures in terms of projective and injective liftings;
in which context, of course, many serious examples already exist. In the one-dimensional
context, there were no non-trivial examples at all, and so we felt compelled to provide some.

These examples are sufficiently natural that their existence is surely not without force.
However, it is as yet unclear to us what this force may be. One possibility is that some aspects
of model category theory do not trivialise in this setting, and provide interesting information.
This may be true, for example, for the theory of monoidal model categories, or the theory of
homotopy limits and colimits.

More interestingly, it could be that the existence of a one-dimensional model structure is
alerting us to some as-yet unconsidered good property of the interaction between a reflective
and a coreflective subcategory. It is suggestive that many of the right proper examples we
have found come from topos theory and, in particular, relate either to the Galois theory
of Grothendieck [18] or to the petit topos–gros topos dichotomy explored in, for example,
[14,20]. It would be very interesting to see if these links can be made tighter. To this end,
some natural questions to explore would be: can we give a topos-theoretic characterisation
of all right proper one-dimensional model structures on a presheaf category [Cop,Set]?What
information do Quillen adjunctions between such model structures carry?
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