
Mathematical Structures in Computer Science (2022), 32, pp. 374–419
doi:10.1017/S0960129521000219

PAPER

The costructure–cosemantics adjunction for comodels
for computational effects
Richard Garner∗

Department of Mathematics, Macquarie University, NSW 2109, Australia
∗Corresponding author. Email: richard.garner@mq.edu.au

(Received 29 November 2020; revised 9 July 2021; accepted 12 August 2021; first published online 6 December 2021)

Abstract
It is well established that equational algebraic theories and the monads they generate can be used to encode
computational effects. An important insight of Power and Shkaravska is that comodels of an algebraic
theory T – i.e., models in the opposite category Setop – provide a suitable environment for evaluating the
computational effects encoded by T. As already noted by Power and Shkaravska, taking comodels yields a
functor from accessible monads to accessible comonads on Set. In this paper, we show that this functor is
part of an adjunction – the “costructure–cosemantics adjunction” of the title – and undertake a thorough
investigation of its properties. We show that, on the one hand, the cosemantics functor takes its image in
what we term the presheaf comonads induced by small categories; and that, on the other, costructure takes
its image in the presheaf monads induced by small categories. In particular, the cosemantics comonad
of an accessible monad will be induced by an explicitly-described category called its behaviour category
that encodes the static and dynamic properties of the comodels. Similarly, the costructure monad of an
accessible comonad will be induced by a behaviour category encoding static and dynamic properties of the
comonad coalgebras.We tie these results together by showing that the costructure–cosemantics adjunction
is idempotent, with fixpoints to either side given precisely by the presheaf monads and comonads. Along
the way, we illustrate the value of our results with numerous examples drawn from computation and
mathematics.

1. Introduction
It is a pleasure to contribute to this festschrift volume for John Power. I first met John about fif-
teen years ago during my time as a PhD student in Cambridge, when in particular, he served as
my external thesis examiner: an encounter which could fairly be described as “character-building”.
Since then, our paths have crossed all too infrequently – that is, until recently, when John once
and for all put the dark British winter days behind him and came home to Australia. Since then,
John has once again become a regular feature of the Australian Category Seminar, and through
his invigorating talks, I have come to appreciate more deeply the interconnections between his
category-theoretic contributions in the Australian style and their applications in the world of
computer science. This article is in that spirit and revolves around some of John’s perspicuous
contributions to the study of computational effects and their semantics.

It is a well-known story that the category-theoretic approach to computational effects origi-
nates with Moggi [25]. Given a cartesian closed category C, providing a denotational semantics
for a base notion of computation, this approach allows additional language features such as
input/output, interaction with the store, or non-determinism – all falling under the general rubric
of “effects” – to be encoded in terms of algebraic structure borne by objects of C.

C© The Author(s), 2021. Published by Cambridge University Press

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219
https://orcid.org/0000-0003-4475-8721
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129521000219&domain=pdf
https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 375

In Moggi’s treatment, this structure is specified via a strong monad T on C; a disadvantage of
this approach is that, in taking as primitive the objects T(A) of computations with effects from T
and values in A, it gives no indication of how the effects involved are to be encoded as language
features. An important thread [28–30] in John’s work with Gordon Plotkin has sought to rectify
this, by identifying a computational effect not with a strong monad per se, but rather with a set of
(computationally meaningful) algebraic operations and equations that generate a strong monad,
in the sense made precise by John and Max Kelly in [20].

The most elementary case of the above takes C= Set: then a computational effect in Moggi’s
sense is simply a monad on Set, while an effect in the Plotkin–Power sense is an equational
algebraic theory, involving a signature of (possibly infinitary) operations and a set of equations
between terms in the signature. As the same monad may admit many different presentations, the
Plotkin–Power approach is more refined, but it is also slightly narrower in scope, as not every
monad on Set is engendered by an algebraic theory, but only the accessible ones – also called
monads with rank. (A well-known inaccessible monad is the continuation monad VV(–)).

The Plotkin–Power approach makes it particularly easy to define models in any category A
with powers: they are A-objects endowed with interpretations of the given operations which sat-
isfy the given equations. When A= Set, such models are the same as algebras for the associated
monad; computationally, these can be interpreted as sets of effectful computations which have
been identified up to a notion of equivalence which respects the effect semantics.

It is another important insight of John, in collaboration with Olha Shkaravska [32], that there
is also a computational interpretation of comodels. A comodel in A is simply a model in Aop,
and again an important case is where A= Set. The idea is that, given an algebraic theory T for
effects which interact with an “environment”1, a comodel of T in Set provides the kind of envi-
ronment with which such programs interact. The underlying set S of such a comodel is the set of
possible states of the environment; while each generating A-ary operation σ of the theory – which
requests an element of A from the environment and binds it – is co-interpreted as a function
([[σ]] : S→A× S) which answers the request, and moves to a new state. While, in the first
instance, we co-interpret only the generatingT-operations, we can extend this inductively to allA-
ary computations t ∈ T(A) of the associated monad; whereupon we can see the co-interpretation
[[t]] : S→A× S as a way of running (c.f. [37]) the computation t ∈ T(A) starting from some state
s ∈ S to obtain a return value in A and a final state in S.

The computational perspective on comodels is powerful and has achieved significant traction
in computer science; see, for example, [4, 24, 26, 27, 31, 37]. However, our objective in this paper
is to return to the original [32] and settle some of the unanswered questions posed there. Power
and Shkaravska observe that the category of comodels of any algebraic theory is comonadic over
Set, so that, if we choose to identify algebraic theories with monads, then we have a process which
associates to each accessible monad on Set a certain comonad on Set. This leads them to ask:
“Does the construction of a comonad on Set from a monad with rank on Set yield an interesting
relationship between monads and comonads?”

We will answer this question in the affirmative, by showing that this construction provides the
right adjoint part of a dual adjunction

(1)

between the categories of accessible monads and accessible comonads on Set. The corresponding
left adjoint can be seen as taking a comonad Q on Set to the largest algebraic theory for which any
Q-coalgebra is a comodel. Following [11, 22], we refer to the two functors in this adjunction as
“cosemantics” and “costructure”.

1We use this word in its everyday sense, with no particular technical meaning attached.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

376 Richard Garner

In fact, the mere existence of the adjunction (1) is not hard to establish. Indeed, as we will
see, its two directions were already described in [19], with our costructure corresponding to their
dual monad of a comonad, and our cosemantics being their Sweedler dual comonad of a monad.
Our real contribution is that we do not seek merely to construct (1), but also to understand it
thoroughly and concretely.

In one direction, we will explicitly calculate the cosemantics functor, this will, among other
things, answer [32]’s request that “we should very much like to be able to characterise those
comonads, at least on Set, that arise from categories of comodels”. These comonads will be what
we term presheaf comonads; for a small category B, the associated presheaf comonad QB is that
induced by the adjunction

whose left part is restriction and right Kan extension along the inclusion-of-objects functor
J : ob(B)→B; more explicitly, we have thatQB(A)=∑

b∈B
∏

c∈B AB(b,c). Comonads of this form
are known entities in computer science: they are precisely the interpretations of directed containers
as introduced in [5], and in [8] were termed dependently typed coupdate comonads.

In fact, we do more than merely characterising the image of the cosemantics functor: we prove
for each accessible monad T on Set that its image under cosemantics is the presheaf comonad of
an explicitly given category BT, which we term the behaviour category of T. Since the category of
Eilenberg–Moore QBT-coalgebras is equivalent to the functor category [BT, Set], we may also state
this result as:

Theorem. Given an accessible monad T with behaviour category BT, the category of T-comodels
is equivalent to [BT, Set] via an equivalence commuting with the forgetful functors to Set.

Our description of the behaviour category BT is quite intuitive. Objects β ∈BT are elements of
the final T-comodel in Set, which may be described in many ways; we give a novel presentation
as what we term admissible behaviours of T. These comprise families (βA : T(A)→A)A∈Set of
functions, satisfying axioms expressing that β acts like a state of a comodel in providing a uniform
way of running T-computations to obtain values. As for morphisms ofBT, these will be transitions
between admissible behaviours determined by T-commands, i.e., unary operations m ∈ T(1). We
will see that maps with domain β in BT are T-commands identified up to an equivalence relation
∼β which identifies commands which act in the same way on all states of behaviour β .

We also describe the action of the cosemantics functor on morphisms. Thus, given a map of
monads f : T1→ T2 – which encodes an interpretation or compilation of effects – we describe the
induced map of presheaf comonads QBT2

→QBT1
. As explained in [8], maps of presheaf comon-

ads do not correspond to functors, but rather to so-called cofunctors [3, 16] of the corresponding
categories, involving a mapping forwards at the level of objects, and mappings backwards on
morphisms. We are able to give an explicit description of the cofunctor on behaviour categories
induced by a monad morphism.

Theorem. The functor B(–) : Mnda(Set)op→ Cof taking each accessible monad to its behaviour
category, and each map of accessible monads to the induced cofunctor on behaviour categories yields
a within-isomorphism factorisation of the cosemantics functor through the category Cat of small
categories and cofunctors:

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 377

For the other direction of the adjunction (1), we will in an analogous manner give an explicit
calculation of the image of the costructure functor. On objects, the monads in this image are what
we term presheaf monads; here, for a small category B, the presheaf monad TB is that induced by
the adjunction:

with the explicit formula TB(A)=∏
b∈B

∑
c∈B B(b, c)×A (note the duality with the comonad

QB). Much like before, we will prove for each accessible comonad Q on Set that its image under
costructure is of the form TBQ for an explicitly given “behaviour category” BQ. The picture is per-
haps less compelling in this direction, but the objects ofBQ can again be described as “behaviours”,
by which we now mean elements of the final Q-coalgebra Q(1); while morphisms of BQ are uni-
form ways of transitioning between Q-behaviours. Like before, we also compute the costructure
functor on morphisms and again find that each comonad morphism induces a cofunctor between
behaviour categories, so yielding our third main result:

Theorem. The functor B(–) : Cmda(Set)→ Cof taking an accessible comonad to its behaviour
category, and a map of accessible comonads to the induced cofunctor on behaviour categories yields
a within-isomorphism factorisation

It remains only to understand how costructure and cosemantics interact with each other. The
crucial observation is that (1) is an example of a so-called idempotent (orGalois) adjunction. Here,
an adjunction F �G : D→ C is idempotent if any application of F yields a fixpoint to the left, i.e.,
an object of D at which the adjunction counit is invertible, while any application of G yields a
fixpoint to the right, i.e., an object of C at which the adjunction unit is invertible. In these terms,
our final main result can be stated as:

Theorem. The costructure–cosemantics adjunction (1) is idempotent. Its fixpoints to the left and
the right are the presheaf monads and presheaf comonads.

Let us note that the results of this paper are only the first step in a larger investigation. On the
one hand, to deal with recursion, we will require a comprehensive understanding of enriched ver-
sions of the costructure–cosemantics adjunction. On the other hand, even in the unenriched world
of equational algebraic theories, we may be interested in understanding costructure and coseman-
tics for comodels in other categories than Set: for example, topological comodels, which encode
information not only about behaviours of states but also about finitistic, computable observations
of such behaviour. We hope to pursue these avenues in future work.

We conclude this introduction with a brief overview of the contents of the paper. We begin in
Section 2 with background material on algebraic theories, their models and comodels and the
relation to monads on Set, along with relevant examples relating to computational effects. In
Section 3, we prepare the ground for our main results by investigating the classes of presheaf mon-
ads and comonads. Then in Section 4, we give the construction of the costructure–cosemantics
adjunction (1), and explain how its two directions encapsulate constructions of [19].

In Section 5, we calculate the values of the cosemantics functor. We begin with a general
category-theoretic argument that shows that its must take values in presheaf comonads; we then
give a concrete calculation of the presheaf comonad associated with a given accessible monad, or
in other words, of the behaviour category of the given monad. We also describe the cofunctors
between behaviour categories induced by monad morphisms.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

378 Richard Garner

In Section 6, we turn to the costructure functor, showing by a direct calculation that it
sends each accessible comonad to the presheaf monad of an appropriate behaviour category. As
before, we also describe the cofunctor on behaviour categories induced by each map of accessi-
ble comonads. Then in Section 7, we tie these results together by exhibiting the idempotency of
the costructure–cosemantics adjunction and characterising its fixpoints as the presheaf monads
and comonads. Finally, Sections 8 and 9 are devoted to examples of behaviour categories and
cofunctors calculated using our main results.

2. Algebraic Theories and Their (Co)models
2.1. Algebraic theories
In this background section, we recall the definition of (possibly infinitary) algebraic theory; the
notions of model and comodel in any suitable category; and the relation to monads on Set. We
also recall the applications of these notions in the study of computational effects.

Definition 2.1 (Algebraic theory).A signature comprises a set� of function symbols, and for each
σ ∈� a set |σ |, its arity. Given a signature � and a set A, we define the set �(A) of �-terms with
variables in A by the inductive clauses

a ∈A =⇒ a ∈�(A) and σ ∈�, t ∈�(A)|σ | =⇒ σ (t) ∈�(A) .

An equation over a signature� is a triple (A,t,u) with A a set and t, u ∈�(A). An algebraic theory
T is a signature� and a set E of equations over it.

Definition 2.2 (T-terms). Given a signature � and terms t ∈�(A) and u ∈�(B)A, we define the
substitution t(u) ∈�(B) recursively by

a ∈A =⇒ a(u)= ua and σ ∈�, t ∈�(A)|σ | =⇒ (σ (t))(u)= σ (λi. ti(u)) .
Given an algebraic theory T= (�, E) and a set B, we define T-equivalence to be the smallest
equivalence relation≡T on �(B) such that:

1. If (A, t, u) ∈ E and v ∈�(B)A, then t(v)≡T u(v);
2. If σ ∈� and ti ≡T ui for all i ∈ |σ |, then σ (t)≡T σ (u).

The set T(A) of T-terms with variables in A is the quotient �(A)/≡T.

When an algebraic theoryT is thought of as specifying a computational effect, we think of T(A)
as giving the set of computations with effects from T and returning a value in A. The following
standard examples illustrate this.

Example 2.3 (Input). Given a set V, the theory of V-valued input comprises a single V-ary function
symbol read, satisfying no equations, whose action we think of as:

(t : V→ X)
→ let read() be v. t(v) .

For this theory, terms t ∈ T(A) are computations that can request V-values from an external source
and use them to determine a return value in A. For example, when V =N, the program which
requests two input values and returns their sum is encoded by

let read() be n. let read() bem. n+m ∈ T(N) . (2)

For an algebraic theory qua computational effect, it is idiomatic that its function symbols are
read in continuation-passing style, so the domain of a function symbol XV→ X is a scope in

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 379

which an element of V is available to determine a continuation, and applying the operation binds
this element to yield a continuation simpliciter.

Example 2.4 (Output).Given a set V, the theory of V-valued output comprises an V-indexed family
of unary function symbols (writev : v ∈V) subject to no equations. In the continuation-passing style,
we denote the action of writev by

t
→ let write(v) be . t or, more simply, t
→write(v); t .

Example 2.5 (Read-only state). Given a set V, the theory of V-valued read-only state has a single
V-ary operation get, satisfying the equations

get(λv. x)≡ x and get(λv. get(λw. xvw))≡ get(λv. xvv) . (3)

These equations express that reading from read-only state should not change that state, and that
repeatedly reading the state should always yield the same answer; in another nomenclature, these
axioms express that get is copyable and discardable [36]. Note also that if V is a two-element set, and
we write get(x, y) as x · y, then these equations become x · x≡ x and (x · y) · (w · z)≡ x · z, which are
easily seen to be equivalent to the equations asserting that · is an idempotent associative operation
satisfying the “rectangular band” identity xyx≡ x.

Example 2.6 (State, [29]). Given a set V, the theory of V-valued state comprises an V-ary operation
get and a V-indexed family of unary operations putv, subject to the following equations:

get(λv. putv(x))≡ x putu(putv(x))≡ putv(x) putu(get(λv. xv))≡ putu(xu) .
Read in continuation-passing style, these axioms capture the semantics of reading and updating a
store containing an element of V.

We now describe the appropriate morphisms between algebraic theories.

Definition 2.7 (Category of algebraic theories). Let T1 = (�1, E1) and T2 = (�2, E2) be algebraic
theories. An interpretation f : T1→T2 is given by specifying, for each σ ∈�1, a term σ f ∈�2(|σ |)
such that, on defining for each t ∈�1(A) the term t f ∈�2(A) by the recursive clauses

a ∈A⇒ a f = a and σ ∈�, t ∈�(A)|σ | ⇒ (σ (t)) f = σ f (λa. (ta) f) , (4)

we have that t f ≡T2 u f for all (A, t, u) ∈ E1. With the obvious composition, we obtain a category
AlgTh algebraic theories and interpretations.

An interpretation T1→T2 between theories can be understood as a way of translating
computations with effects from T1 into ones with effects from T2.

Example 2.8 Let h : V→W be a function between sets, letT1 be the theory of V-valued output, and
let T2 be the theory of W-valued state. We have an interpretation f : T1→T2 defined by write f

v =
puth(v).

Example 2.9 Let h : W→V be a function between sets, let T1 be the theory of V-valued read-only
state, and let T2 be the theory of W-valued state. We have an interpretation f : T1→T2 defined by
get f = get(λw. h(w)).

2.2. Models and comodels
We now describe the notions of model and comodel for an algebraic theory. We begin by
establishing some necessary notation.

Notation 2.10 We say that a category C has powers if, for every X ∈ C and set A, an A-fold self-
product (πa : XA→ X)a∈A exists in C. Given an A-indexed family of maps fa : Y→ X, we write
(f a)a∈A for the unique map Y→ XA such that πb ◦ (fa)a∈A = fb for all b ∈A. Dually, we say C

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

380 Richard Garner

has copowers if all A-fold self-coproducts (ιa : X→A · X)a∈A exist in C; and given an A-indexed
family of maps fa : X→ Y , we write 〈 f a〉a∈A for the unique map A · X→ Y with 〈 f a〉a∈A ◦ ιb = fb.

Definition 2.11 (�-structure). Let � be a signature. A �-structure X= (X, [[–]]X) in a category C
with powers comprises an underlying object X ∈ C and operations [[σ]]X : X|σ | → X for each σ ∈�.
Given a �-structure X ∈ C� , we define for each t ∈�(A) the derived operation [[t]]X : XA→ X by
the following recursive clauses:

[[a]]X = πa and [[σ (t)]]X = XA ([[ti]]X)i∈|σ |−−−−−−→ X|σ | [[σ]]X−−−→ X . (5)

Definition 2.12 (T-model). Let T= (�, E) be an algebraic theory. A T-model in a category with
powers C is a �-structure X such that [[t]]X = [[u]]X : XA→ X for all (A, t, u) ∈ E. We write CT for
the category whose objects are T-models in C, and whose maps X→ Y are C-maps f : X→ Y such
that [[σ]]Y ◦ f |σ | = f ◦ [[σ]]X for all σ ∈�. We write UT : CT→ C for the obvious forgetful functor.

Lemma 2.13 (Substitution, soundness). If X is a T-model in C, then:

(i) For all t ∈ T(B) and u ∈ T(A)B we have that
[[t(u)]]X = XA ([[ub]]X)b∈B−−−−−−→ XB [[t]]−→ X ;

(ii) If t≡T u in T(A), then [[t]]X = [[u]]X : XA→ X.

Example 2.14 Given an object X of a category C with powers, we see that:

(i) To make X a model of the theory of V-valued output is to endow it with a V-indexed family
of maps X→ X, or equally, a single map X→ XV.

(ii) To make X a model of the theory of V-valued input is to endow it with a map XV→ X.
(iii) To make X a model of V-valued read-only state is to give a map g : XV→ X which renders

commutative the diagrams

When C= Set, [17, Proposition 4.3] shows that the category of such models is equivalent to
the full subcategory of SetV whose objects are families of sets (Xv : v ∈V) which are either all
empty or all non-empty. The model corresponding to such a family is given by (X, g) where
X=∏

v∈V Xv and

g : (
∏
v∈V

Xv)V→
∏
v∈V

Xv λv. (λw. xvw)
→ λv. xvv . (6)

(iv) To make X into a model of the theory of V-valued state is to give maps g : XV→ X and
p : X→ XV which render commutative the diagrams

The category of such models in Set is in fact equivalent to Set itself; a more detailed anal-
ysis shows that it is isomorphic to the category whose objects are families of sets (Xv : v ∈

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 381

V) endowed with functions (necessarily isomorphisms) θvw : Xv→ Xw satisfying θvv = idXv
and θvwθuv = θuw. The model corresponding to such an object has underlying object X=∏

v∈V Xv, with g given as in (6), and with

p :
∏
v∈V

Xv→ (
∏
v∈V

Xv)V λv. xv
→ λv. λw. θvw(xv) .

Dual to the notion of model is the notion of comodel. Recall that a category C has copowers if
every A-fold self-coproduct (νa : X→A · X)a∈A exists in C.

Definition 2.15 (Comodel). LetT be an algebraic theory. AT-comodel in a category Cwith copow-
ers is a model ofT in Cop; it thus comprises an object X ∈ C and “co-operations” [[σ]]X : X→|σ | · X,
subject to the equations of T. We write TC for the category of T-comodels in C and TU : TC→ C for
the forgetful functor.

If we say simply “model” or “comodel”, we will by default mean model or comodel in Set. As
explained in [31, 32], set-based comodels provide deterministic environments suitable for evaluat-
ing computations with effects from T. Before recalling how this works, we first unfold the notion
of comodel (in Set) for our running examples, noting that when C= Set, the copower A · X is
simply the cartesian product A× X.

Example 2.16 A comodel S of the theory of V-valued input is a state machine which responds to
requests for V-characters; it comprises a set of states S and a map [[read]]S = (g, n) : S→V × S
assigning to each s ∈ S a character g(s) ∈V to be read and a new state n(s) ∈ S.
Example 2.17 A comodel S of the theory of V-valued output is a state machine which changes its
state in response to V-characters: it comprises a set of states S and maps [[writev]]S : S→ S for each
v ∈V, or equally, a single map p : V × S→ S, providing for each character v ∈V and state s ∈ S a
new state p(v, s) ∈ S.
Example 2.18 A comodel S of the theory of V-valued read-only state comprises a set S together with
a function [[get]]S = (g, n) : S→V × S satisfying

n(s)= s and
(
g(s), g(n(s)), n(n(s))

)= (
g(s), g(s), n(s)

)
. (7)

The first axiom allows us to ignore n, and moreover implies the second axiom; whence a comodel
amounts to nothing more than a set S and a function g : S→V.

Example 2.19 A comodel of the theory of V-valued state involves a set of states S together with maps
(g, n) : S→V × S and p : S×V→ S rendering commutative the diagrams

These are equally the conditions that
p(g(s), n(s))= s, n(p(v, s))= p(v, s), g(p(v, s))= v and p(v′, p(v, s))= p(v′, s) ,

the first two of which imply n= idS. Thus, to give the comodel is to give the set S together with maps
g : S→V and p : V × S→ S satisfying the axioms

p(g(s), s)= s g(p(v, s))= v and p(v′, p(v, s))= p(v′, s) ;
as noted in [37], this is precisely a (very well-behaved) lens in the sense of [12].

A T-comodel allows us to evaluate T-computations by way of the derived operations of
Definition 2.11. Indeed, given a comodel S ∈ TSet and a term t ∈ T(A), the derived co-operation

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

382 Richard Garner

[[t]] : S→A× S is defined by the recursive clauses
a ∈A =⇒ [[a]](s)= (a, s)

and σ ∈�, t ∈ T(A)|σ | =⇒ [[σ (t)]](s)= [[ti]](s′) where [[σ]](s)= (i, s′) .
(8)

(Here, and henceforth, we drop the subscript Swhere confusion seems unlikely.) The semantics
of this is clear: given a T-computation σ (t) ∈ T(A) and starting state s, we respond to the request
for a |σ |-element posed by the outermost operation symbol of σ (t) by evaluating [[σ]](s) to obtain
i ∈ |σ | along with a new state s′; substituting this i into t yields the simpler computation ti which
we now run from state s′. When we hit a value a ∈Awe return it along with the final state reached.

Example 2.20 Consider the theory of N-valued input, and the term from (2), which we may
equally write as t= read(λn. read(λm. n+m)) ∈ T(N). If S is the comodel with S= {s, s′, s′′} and
[[read]] : S→N× S given as to the left in:

s
→ (7, s′) s
→ (18, s′′)
s′
→ (11, s′′) s′
→ (24, s′′)
s′′
→ (13, s′′) s′′
→ (26, s′′) ,

then [[t]] : S→N× S is given as to the right. For example, for [[t]](s) we calculate that
[[read(λn. read(λm. n+m))]](s)= [[read(λm. 7+m)]](s′)= [[7+ 11]](s′′)= (18, s′′).

We conclude our discussion of models and comodels by describing the functoriality of the
assignment T
→ CT.

Definition 2.21 (Semantics and cosemantics). For a category Cwith powers, the semantics functor
SemC : AlgThop→ CAT/C is given by T
→ (UT : CT→ C) on objects, while on maps, an inter-
pretation f : T1→T2 is taken to the functor f ∗ : CT2→ CT1 over C acting via (X, [[–]]X)
→
(X, [[(–) f]]X).

Dually, for any category C with copowers, we define the cosemantics functor
CosemC : AlgThop→ CAT/C by T
→ (TU : TC→ C) on objects, and on morphisms in the
same manner as above; more formally, we have CosemC = SemCop(–)op.

The functoriality of (co)semantics implies that theories T and T
′ which are isomorphic in

AlgTh have the same (co)models in any category with (co)powers C; we call such theoriesMorita
equivalent.

Example 2.22 Let h : V→W be a function, and let f : T1→T2 be the interpretation of V-valued
output into W-valued state of Example 2.8. For each comodel

S= (S, g : S→W, p : S×W→ S)
of W-valued state, the associated comodel f ∗S of V-valued output is (S, p ◦ (1× h) : S×V→ S).

Example 2.23 Let h : W→V be a function, and let f : T1→T2 be the interpretation of V-valued
read-only state into W-valued state of Example 2.9. For each comodel

S= (S, g : S→W, p : S×W→ S)
of W-valued state, the associated comodel f ∗S of V-valued read-only state is (S, hg : S→V).

2.3. The associatedmonad
Finally in this section, we recall how an algebraic theory gives rise to a monad on Set, and the
manner in which this interacts with semantics. We specify our monads as Kleisli triples in the
style of [23, Exercise 1.3.12].

Definition 2.24 (Associated monad). The associated monad T of an algebraic theory T has
action on objects A
→ T(A); unit maps ηA : A→ T(A) given by inclusion of variables; and Kleisli

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 383

u† : T(A)→ T(B) of u : A→ T(B) given by t
→ t(u). The assignmentT
→ T is the action on objects
of the associated monad functor Ass : AlgTh→Mnd(Set), which on morphisms takes an interpre-
tation f : T1→T2 to the monad morphism T1→ T2 whose components T1(A)→ T2(A) are the
assignments t
→ t f defined as in (4).

Proposition 2.25 The associated monad functor AlgTh→Mnd(Set) is full and faithful, and a
monad T is in its essential image just when it is accessible.

Here, a monad on Set is accessible if its underlying endofunctor is accessible, in the sense of
being a small colimit of representable functors. There are well-known monads on Set which are
not accessible, for example the power-set monad P and the continuation monad VV(–) ; nonethe-
less, we may treat any monad T on Set “as if it were induced by an algebraic theory” by adopting
the following conventions: if a ∈A, then we may write a ∈ T(A) in place of ηA(a) ∈ T(A), and if
t ∈ T(A) and u ∈ T(B)A, then we may write t(u) in place of u†(t).

We now discuss how the model and comodel semantics of an algebraic theory can be expressed
in terms of the associated monad.

Definition 2.26 (T-models and comodels) Let T be a monad on Set and let C be a category with
powers. A T-model X in C is an object X ∈ C together with operations [[t]]X : XA→ X for every set A
and t ∈ T(A), subject to the axioms

[[a]]X = πa and [[t(u)]]X = XB ([[ua]]X)a∈A−−−−−−→ XA [[t]]X−−→ X (9)

for all a ∈A and all t ∈ T(A) and u ∈ T(B)A. We write CT for the category of T-models in C, whose
maps X→ Y are C-maps f : X→ Y with [[t]]Y ◦ f A = f ◦ [[t]]X for all sets A and all t ∈ T(A); we
write UT : CT→ C for the forgetful functor.

If C is a category with copowers then a T-comodel in C is a T-model in Cop, involving co-
operations [[t]]X : X→A · X subject to the dual axioms

[[a]]X = νa and [[t(u)]]X = X [[t]]X−−→A · X 〈[[ua]]X〉a∈A−−−−−−→ B · X . (10)

We write TU : TC→ C for the forgetful functor from the category of T-comodels.

Definition 2.27 (Semantics and cosemantics). For any category C with powers, the semantics
functor SemC : Mnd(Set)op→ CAT/C is given by T
→ (UT : CT→ C) on objects; while a monad
morphism f : T1→ T2 is taken to the functor f ∗ : CT2→ CT1 over C acting via (X, [[–]]X)
→
(X, [[f (–)]]X). For a category C with copowers, we define the cosemantics functor by CosemC :=
SemCop(–)op : Mnd(Set)op→ CAT/C.

The following result, which again is entirely standard, tells us that we lose no semantic
information in passing from an algebraic theory to the associated monad.

Proposition 2.28 For any category C with powers (respectively, copowers), the triangle to the left
(respectively, right) below commutes to within natural isomorphism:

In light of this result, we will henceforth prefer to deal with accessible monads, though noting
as we go along any simplifications afforded by having available a presentation via an algebraic
theory.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

384 Richard Garner

3. Presheaf Monads and Comonads
3.1. Presheaf monads and comonads
In this section, we describe and study the presheaf monads and comonads which will be crucial to
our main results. This is largely revision from the literature, though Propositions 3.8 and 3.12 are
novel.

Definition 3.1 (Presheaf monad and comonad). Let B be a small category. The presheaf monad
TB and the presheaf comonad QB are the accessible monad and accessible comonad on Set induced
by the respective adjunctions:

(11)

where J : ob(B)→B is the inclusion of objects, and where res, lan and ran denote restriction, left
Kan extension and right Kan extension. If we write Bb for the set of all B-maps with domain b, then
the underlying endofunctors are given by

TB(A)=∏
b∈B Bb ×A and QB(A)=∑

b∈B ABb ;

the unit and multiplication for TB are given by

ηA : A→∏
b (Bb ×A) μA : ∏

b (Bb ×
∏

b′ (Bb′ ×A))→∏
b (Bb ×A)

a
→ λb. (1b, a) λb. (fb, λb′. (gbb′ , abb′))
→ λb. (gb,cod(fb) ◦ fb, ab,cod(fb)) .
while the counit and comultiplication for QB are given by

εA : ∑
b ABb→A δA : ∑

b ABb→∑
b
(∑

b′ A
B
b′)Bb

(b, ϕ)
→ ϕ(1b) (b, ϕ)
→ (
b, λf . (cod(f), λg. ϕ(gf))

)
.

(12)

We call a general monad T on Set a presheaf monad if it is isomorphic to some TB, and
correspondingly on the comonad side.

Presheaf monads and comonads have been considered in computer science; in [8] they
are termed “dependently typed update monads” and “dependently typed coupdate comonads”,
respectively, but both have a longer history, as we now recall.

To the comonad side, we note that the underlying endofunctor of a presheaf comonad is poly-
nomial, i.e., a coproduct of representable functors. Such endofunctors are exactly those which
arise as the interpretations of set-based containers [1], and in [5], this was enhanced to a charac-
terisation of polynomial comonads as the interpretations of so-called directed containers. Now, as
observed in [8], directed containers correspond bijectively to small categories, and so we conclude
that the presheaf comonads on Set are precisely the polynomial comonads. For self-containedness,
we include a short direct proof of this fact.

Proposition 3.2 For a comonad Q on Set, the following conditions are equivalent:

(i) Q is a presheaf comonad;
(ii) The underlying endofunctor Q is a coproduct of representables;
(iii) The underlying endofunctor Q preserves connected limits.

Proof. Clearly (i) ⇒ (ii), and (ii) ⇔ (iii) is standard category theory due to Diers [10]; so it
remains to show (ii)⇒ (i). Suppose, then, that Q=∑

b∈B (–)Eb is a coproduct of representables.
By the Yoneda lemma, giving ε : Q⇒ 1 is equivalent to giving the elements 1b := εEb(b, λf . f) ∈ Eb
for each b ∈ B. Similarly, giving δ : Q⇒QQ is equivalent to giving for each b ∈ B an element

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 385

of QQ(Eb), i.e., elements α(b) ∈ B and λf . (c(f), ρf) : Eα(b)→
∑

b′ E
E
b′

b . Now the three comonad
axioms correspond under the Yoneda lemma to the following assertions:

• The axiom εQ ◦ δ = 1Q asserts that α(b)= b and ρf (1c(f))= f ;
• The axiom Qε ◦ δ = 1Q asserts that c(1b)= b and ρ1b = idEb ;
• The axiom Qδ ◦ δ = δQ ◦ δ asserts that c(g)= c(ρf (g)) and ρf ◦ ρg = ρρf (g).
But these are precisely the data and axioms of a small category B with object-set B, with Bb =

Eb, with identities 1b, with codomain map c, and with precomposition by f given by ρf ; and on
defining B in this way, we clearly have Q=QB. �

To the monad side, presheaf monads seem to have been first considered in [17, Example 8.7],
in terms of a presentation as an algebraic theory. We now recall this presentation, though framing
it in terms of the applications of [7].

Notation 3.3 Let � be a signature, and q ∈�(A) and t, u ∈�(B) terms where without loss of
generality A is disjoint from B. For any i ∈A, we write t≡q,i u (read as “t and u are equal in the ith
place of q”) as an abbreviation for the equation

q
(
λa.

{
t(�b) if a= i
a if a �= i

)
≡ q

(
λa.

{
u(�b) if a= i
a if a �= i

)
in�(A∪ B \ {i}) .

Example 3.4 (Dependently typed update). Let B be a small category, whose objects we view as val-
ues, and whose arrows b→ b′ we view as updates from b to b′. The theory of B-valued dependently
typed update is generated by an ob(B)-ary operation get satifying the axioms of read-only state,
together with a unary operation updf for each morphism f : b→ b′ in B, subject to the equations

updf (x)≡get,c x for f : b→ b′ and c �= b in B; (13)
updf (get(λa. xa))≡get,b updf (xb′) for f : b→ b′ in B; (14)

upd1b(x)≡ x for b ∈ ob(B); (15)
updf (updg(x))≡get,b updgf (x) for f : b→ b′, g : b′ → b′′ in B. (16)

The intended semantics is that get reads a value associated with the current state; while updf ,
for f : b→ b′ in B, attempts to update the value b to b′ via f. If the value of the current state is not
b, then the update fails (the first axiom above); while if the value is b, then we move to a new state
with associated value b′ (the second axiom). The remaining axioms assert that updates compose as
expected.

We now justify our nomenclature by showing that the theory of B-valued dependently typed
update generates the presheaf monad TB, which as we have explained, is equally an example of a
dependently typed update monad as in [7].

Proposition 3.5 For any small category B, the theory of B-valued dependently typed update
generates the presheaf monad TB.

Proof. For each set A, we make TB(A)=∏
b (Bb ×A) a model of the theory T of dependently-

typed update by taking [[get]]
(
λb.λc. (gbc, abc)

)= λb. (gbb, abb) and
[[updf]](λc. (gc, ac))= λc.

{
(gc, ac) if c �= b;
(gb′ f , ab′) if c= b

for f : b→ b′ in B.

It is easy to verify that an equation t≡get,b u holds in TB(A) precisely when the interpreta-
tions [[t]] and [[u]] have the same postcomposition with the projection πb :

∏
b (Bb ×A)→

Bb ×A; whence the axioms for dependently typed update are satisfied. Thus, we may extend
ηA : A→∏

b (Bb ×A) uniquely to a homomorphism pA : T(A)→∏
b (Bb ×A); we also have

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

386 Richard Garner

a function iA : ∏
b (Bb ×A)→ T(A) given by λc. (gc, ac)
→ get(λc. updgc(ac)) which we claim

is also a model homomorphism. It commutes with get since get(λb. get(λc. updgbc(abc)))=
get(λc. updgcc(acc)). To see it commutes with updf for f : b→ b′, we observe that

updf (get(λc. updgc(ac))≡get,b updf (updgb′ (ab′))≡get,b updgb′f (ab′)
and updf (get(λc. updgc(ac))≡get,c get(λc. updgc(ac))≡get,c updgc(ac) for c �= b,

from which it follows that

updf (get(λc. updgc(ac))= get
(
λc.

{
updgc(ac) if c �= b;
updg

b′ f (ab′) if c= b
)

as desired. Since get(λb. upd1b(a))≡ upd1b(a)≡ a, we have iA(ηA(a))= a, from which it follows
that iApA = 1T(A). On the other hand, pAiA = 1 by a short calculation, and so pA and iA are mutu-
ally inverse. In this way, we obtain a natural isomorphism T ∼= TB, which by construction is
compatible with the units of the monads T and TB. Compatibility with the multiplications follows
since:

get(λb. updfb(get(λc. updgbc(abc))))≡T get(λb. updfb(updgb,c(fb) (ab,c(fb))))
≡T get(λb. updgb,c(fb)◦fb(ab,c(fb))) . �

3.2. Morphisms of presheaf monads and comonads
We now examine morphisms between presheaf monads and comonads. Beginning again on the
comonad side, we observe, as in [8], that comonad morphisms between presheaf comonads do
not correspond to functors, but rather to cofunctors:

Definition 3.6 (Cofunctor). [3, 16] A cofunctor F : B�C between small categories comprises an
action on objects F : ob(B)→ ob(C) together with actions on morphisms Fb : CFb→Bb for each
b ∈B, subject to the axioms:

(i) F(cod(Fb(f)))= cod(f) for all f ∈CFb;
(ii) Fb(1Fb)= 1b for all b ∈B;
(iii) Fb(gf)= Fcod(Fbf)(g) ◦ Fb(f) for all f ∈CFb and g ∈Ccod(f).

We write Cof for the category of small categories and cofunctors.

In what follows, Cmda(Set) denotes the category of accessible comonads on Set.

Proposition 3.7 Taking presheaf comonads is the action on objects of a fully faithful func-
tor Q(–) : Cof→ Cmda(Set), which on morphisms sends a cofunctor F : B�C to the comonad
morphism QF : QB→QC with components∑

b∈B ABb→∑
c∈C ACc

(b, ϕ)
→ (Fb, ϕ ◦ Fb) .
(17)

This result is again due to [8], but we sketch a proof for self-containedness.
Proof. Let B and C be small categories. As QB =∑

b∈B (–)Bb , we see once again by the
Yoneda lemma that giving a natural transformation α : QB⇒QC is equivalent to giving ele-
ments αBb(b, 1b) ∈QC(Bb); and if we write these elements as pairs (Fb ∈C, Fb : CFb→Bb), then
α itself must have components given as in (17). Similar arguments to the proof of Proposition 3.2

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 387

now show that α commutes with the comonad counits and comultiplication precisely when the
assignments b
→ (Fb, Fb) satisfy the axioms (i)–(iii) for a cofunctor. �

On the monad side, it turns out that monad morphisms between presheaf monads are also
cofunctors between the corresponding categories. This is not quite as straightforward to see,
and for the moment we record only the weaker statement that cofunctors induce morphisms of
presheaf monads; the full claim will be proved in Proposition 7.8 below.

Once again, in what follows,Mnda(Set) will denote the category of accessiblemonads on Set.

Proposition 3.8 Taking presheaf monads is the action on objects of a functor T(–) : Cof→
Mnda(Set)op, which on morphisms sends a cofunctor F : B�C to the monadmorphism TF : TC→
TB with components ∏

c∈C (Cc ×A)→∏
b∈B (Bb ×A)

λc. (fc, ac)
→ λb. (Fb(fFb), aFb) .
(18)

Proof. It is easy to check that the components (18) are natural in A and compatible with the
units and multiplications of the presheaf monads TB and TC. �

3.3. Semantics
We now consider the semantics associated with presheaf comonads and monads. Starting again
on the comonad side, it turns out that the adjunction (11) inducing the presheaf comonad QB is
comonadic, but not strictly so; thus, QB-coalgebras are not exactly presheaves B→ Set, but only
something equivalent:

Definition 3.9 (Left B-set). Let B be a small category. A left B-set is a set X endowed with a
projection map p : X→ ob(B) and an action ∗: ∑

x∈X Bp(x)→ X, notated as (x, f)
→ f ∗ x, satis-
fying the typing axiom p(f ∗ x)= cod(f) and the functoriality axioms id ∗ x= x and g ∗ (f ∗ x)=
(g ◦ f) ∗ x.We writeB-Set for the category of leftB-sets, whose morphisms are functions commuting
with projections and actions. We write UB : B-Set→ Set for the forgetful functor (X, p, ∗)
→ X.

Given a presheafX : B→ Set, we have a corresponding leftB-set given by Y =∑
b∈B X(b) with

the action map (f : b→ c) ∗ (b, x)= (c, X(f)(x)); conversely, given a left B-set (Y , p, ∗), we have a
corresponding presheaf X : B→ Set with X(b)= p−1(b) and X(f)(x)= f ∗ x. These assignments
give an equivalence of categories fitting into a commuting triangle

(19)

where here V sends X : B→ Set to�b∈BX(b).
In [6], what we call a left B-set was termed a coalgebraic update lens; the following result, which

is immediate from the definitions, was also observed there.

Proposition 3.10 For any small category B, the category of Eilenberg–Moore QB-coalgebras is
isomorphic to B-Set via an isomorphism commuting with the functors to Set.

It is moreover easy to see that the isomorphisms of this proposition are natural with respect to
cofunctors F : B�C. To make this precise, we require:

Definition 3.11 (Sum along a cofunctor). Given a cofunctor F : B�C between small categories,
we define the functor �F : B-Set→C-Set to act by

(X
p−→ ob(B), �x∈XBp(x)

∗−→ X)
→ (X Fp−→ ob(C),�x∈XCF(p(x))
∗ F−→ X)

where we write f ∗ F x := Fp(x)(f) ∗ x.
https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

388 Richard Garner

The naturality of the isomorphisms in Proposition 3.10 in question is now expressed by
commutativity of each square

Turning now to the presheaf monad TB, it follows from the results of [17] that the category
of TB-models is equivalent to the category of presheaves X : Bop→ Set which either have each
X(b) empty, or each X(b) non-empty. However, we will be less interested in characterising the TB-
models in Set than the TB-comodels. We may exploit the fact that TB is generated by the theory of
B-valued dependently typed update to obtain such a characterisation.

Proposition 3.12 For any small category B, the category of comodels of the theory TB of B-valued
dependently-typed update is isomorphic to B-Set via a functor

(20)

which sends a left B-set (X, p, ∗) to the TB-comodel X= (X, [[–]]X) with

[[get]]X(x)= (p(x), x) [[updf]]X(x)=
{
x if p(x) �= dom(f);
f ∗ x if p(x)= dom(f).

Proof. A comodel of B-valued dependently typed state is firstly, a comodel of ob(B)-valued
read-only state, i.e., a set X endowed with a function p : X→ ob(B). On top of this, we have func-
tions [[updf]] : X→ X for each f : b→ b′ in B which satisfy the equations (13)–(16). The first
forces [[updf]] to act trivially on the fibre p−1(c) for all c �= b, while the second forces it to map
p−1(b) into p−1(b′). So to give the [[updf]]’s satisfying (13) and (14) is equally to give functions
f ∗ (–) : p−1(b)→ p−1(b′) for each f : b→ b′ in B. Now the last two axioms (15) and (16) impose
the functoriality constraints 1b ∗ x= x and g ∗ (f ∗ x)= (g ◦ f) ∗ x, so that, in sum, a comodel of
B-valued dependently typed update can be identified with a left B-set, via the identification given
in the statement of the result. �

4. The Costructure–Cosemantics Adjunction
In this section, we construct the adjunction which is the main object of study of this paper. We
begin by explaining how taking comodels yields a cosemantics functor from accessible monads to
accessible comonads on Set. We then show that this functor has a left adjoint, as displayed below,
which we term the costructure functor; and finally, we explain how this relates to the material of
[19].

(21)

4.1. The cosemantics comonad of an accessible monad
Our first task is to show that the cosemantics functor of Example 2.27 yields the right adjoint
functor in (21). We begin with the basic facts about Eilenberg–Moore semantics for comonads.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 389

Definition 4.1 (Eilenberg–Moore semantics). Let Cmd(C) be the category of comonads in C. The
Eilenberg–Moore semantics functor EM : Cmd(C)→ CAT/C sends a comonad Q= (Q, ε, δ) to
the forgetful functor UQ : Coalg(Q)→ C from its category of Eilenberg–Moore coalgebras, and sends
f : Q→ P to the functor Coalg(Q)→ Coalg(P) over C which acts on objects by (X, x : X→QX)
→
(X, fX ◦ x : X→ PX).

Lemma 4.2 For any category C, the semantics functor EM : Cmd(C)→ CAT/C is full and faithful,
and its essential image comprises the strictly comonadic functors.

Proof. The first part is [9, Theorem 6.3]; the second is easy from the definitions. �
Here, a functor V : D→ C is strictly comonadic if it has a right adjoint G, and the canonical

comparison functor fromD to the category of coalgebras for the comonadVG is an isomorphism.
Concrete conditions for a functor to be strictly comonadic are given by the Beck comonadicity
theorem [9, Theorem 3.14].

Proposition 4.3 For an accessible Set-monad T, the forgetful functor TU : TSet→ Set from the
category of comodels is strictly comonadic for an accessible comonad.

In the finitary case, this is [32, Theorem 2.2]; this more general form can be proven as a routine
application of the theory of locally presentable categories. We omit this, as Theorem 5.16 provides
an independent elementary argument.

Corollary 4.4 The cosemantics functorMnda(Set)op→ CAT/Set factors as

Mnda(Set)op
Cosem−−−→ Cmda(Set)

EM−−→ CAT/Set .

4.2. The costructure monad of an accessible comonad
We now show that the cosemantics functor Mnda(Set)op→ Cmda(Set) has a left adjoint. This
will arise from the “structure–semantics adjointness” of [11, 22], which we now recall.

Definition 4.5 (Endomorphism monad). Let C be a category with powers which is not neces-
sarily locally small. We say that X ∈ C is tractable if, for any set A, the collection of morphisms
XA→ X form a set. For such an X, the endomorphism monad EndC(X) on Set has action on
objects given by A
→ C(XA, X); unit functions A→ C(XA, X) given by a
→ πa; and Kleisli extension
u† : C(XA, X)→ C(XB, X) of u : A→ C(XB, X) given by t
→ t ◦ (ua)a∈A.

Note that endomorphism monads need not be accessible; for example, the endomorphism
monad of V ∈ Set is the non-accessible continuation monad VV(–) .

Lemma 4.6 Let C be a category with powers, not necessarily locally small, and let X ∈ C be tractable.
There is a bijection, natural in T, between monad morphisms T→ EndC(X) and T-model structures
on X.

Proof. To give a monad map T→ EndC(X) is to give functions T(A)→ C(XA, X) for each set
A, compatibly with units and Kleisli extensions. If we write the action of these functions as t
→
[[t]]X , then these compatibilities are precisely the conditions (5) to make the [[t]]X ’s into a T-model
structure on X. �

In the following result, we call a functor V : A→ C tractable if it is tractable as an object of the
(not necessarily locally small) functor category [A, C].

Proposition 4.7 (Structure/semantics). Let C be a category with powers. The semantics functor
SemC : Mnd(Set)op→ CAT/C of Example 2.27 has a partial left adjoint at each tractable V : A→
C, given by the endomorphism monad End[A,C](V).

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

390 Richard Garner

Proof. LetV : A→ C be tractable, so that End[A,C](V) exists. By Lemma 4.6, there is a bijection,
natural in T, betweenmonadmorphisms T→ End[A,C](V) and T-model structures onV in [A, C].
Now since powers in [A, C] are computed componentwise, T-model structures on V correspond,
naturally in T, with liftings

of V through UT, i.e., with morphisms V→ SemC(T) in CAT/C. �
Because we are interested in comodels rather than models, we will apply this result in its dual

form: thus, we speak of the cotractability of a functor V : A→ C, meaning that each collection
[A, C](V ,A ·V) is a set, and the coendomorphism monad Coend[A,C](V) with action on objects
A
→ [A, C](V ,A ·V), providing the value atV of a partial left adjoint to CosemC : Mnd(Set)op→
CAT/C.

Lemma 4.8 Let Q be an accessible comonad on Set. The forgetful functor from the category of
Eilenberg–Moore coalgebras UQ : Coalg(Q)→ Set is cotractable, and the coendomorphism monad
Coend[Coalg(Q),Set](UQ) is accessible.

Proof. For cotractability, we show that for each set A, the collection of natural transformations
UQ⇒A ·UQ form a set. If we write GQ for the right adjoint of UQ, then transposing under the
adjunction (–) ◦GQ � (–) ◦UQ yields

[Q-Coalg, Set](UQ,A ·UQ)∼= [Set, Set](Q,A · id) , (22)
whose right-hand side is a set since Q is accessible; whence also the left-hand side.

So Coend(UQ) exists; to show accessibility, note that a natural transformation Q⇒A · id is
equally a pair of natural transformations Q⇒ id and Q⇒�A, where�A is the functor constant
atA; and since Set has a terminal object, to giveQ⇒�A is equally to give a functionQ1→A. We
conclude that Coend(UQ)∼= (–)Q1 × [Set, Set](Q, id), which is a small coproduct of representable
functors, and hence accessible. �
Proposition 4.9 The functor Cosem : Mnda(Set)op→ Cmda(Set) of Corollary 4.4 admits a left
adjoint Costr : Cmda(Set)→Mnda(Set)op, whose value at the accessible comonad Q is given by
the coendomorphism monad Coend(UQ).

Proof. The preceding result shows that Coend(UQ) exists and is accessible for each accessible
comonad Q. Now by Lemma 4.2, Proposition 4.3 and the dual of Proposition 4.7, we have natural
isomorphisms

Cmda(Set)(Q, Cosem(T))∼= CAT/Set(UQ, TU)∼=Mnda(Set)(T, Coend(UQ)) . �

Remark 4.10 For future use, we record the concrete form of the adjointness isomorphisms of the
costructure–cosemantics adjunction. Given a comonad morphism α : Q→Cosem(T), correspond-
ing by Lemma 4.2 and Proposition 4.3 to a functor H as in:

the adjoint transpose ᾱ : T→ Coend(UQ) of α sends t ∈ T(A) to ᾱ(t) : UQ⇒A ·UQ with compo-
nents ᾱ(t)(X,x) = [[t]]H(X,x) : X→A× X.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 391

4.3. Relation to duals and Sweedler duals
This completes our construction of the costructure–cosemantics adjunction (21); and in the rest of
this section, we explain its relation to the notions of [19]. The main objects of study in op. cit. are
the interaction laws between a monad T and a comonad Q on a category with products; these
are natural families of morphisms TX×QY→ X× Y which are compatible with the monad
and comonad structures. In Section 3.4 of [19], the authors show that such monad–comonad
interaction laws can also be expressed in terms of:

• Monad morphisms T→Q◦, where Q◦ is the dual monad of Q;
• Comonad morphisms Q→ T•, where T• is the Sweedler dual comonad of T.

It may ormay not be the case that the dual monad of a comonad, or the Sweedler dual comonad
of a monad, exist; however, they do always exist when we are dealing with accessible monads and
comonads on Set, and the definitions are as follows:

Definition 4.11 (Dual monad) The dual of an accessible comonad Q on Set is the accessible monad
Q◦ with Q◦(A)= [Set, Set](Q,A · id), with unit map ηA : A→Q◦A given by

a
→ Q ε−→ id νa−→A · id

and with the Kleisli extension u† : [Set, Set](Q,A · id)→ [Set, Set](Q, B · id) of the function
u : A→ [Set, Set](Q, B · id) given by

Q τ−→A · id
→ Q δ−→QQ τQ−→A ·Q 〈ua〉a∈A−−−−→ B · id .

The assignment Q
→Q◦ is the action on objects of the dual monad functor Cmda(Set)→
Mnda(Set)op, whose action on morphisms takes a comonad map f : Q→ P to the monad map
P◦ →Q◦ with components α
→ αf .

Definition 4.12 (Sweedler dual comonad) The Sweedler dual of an accessible monad T on Set is
the accessible comonad T• providing the value at T of a right adjoint to the dual monad functor.

We now show that, in fact, these constructions relating accessible monads and comonads are
precisely the two directions of our adjunction (21).

Proposition 4.13 For each Q ∈ Cmda(Set), there is a monad isomorphism Q◦ ∼=Costr(Q) taking
α : Q⇒A · id in Q◦A to α̃ : UQ⇒A ·UQ in Coend(UQ)(A) with components

α̃(X,x) = X x−→QX αX−→A× X .

It follows that Costr∼= (–)◦ : Cmda(Set)→Mnda(Set)op and, consequently, that Cosem∼=
(–)• : Mnda(Set)op→ Cmda(Set).

Proof. Consider the category X whose objects are endofunctors of Set, and whose mor-
phisms F→ F′ are natural transformations FUQ⇒ F′UQ : Coalg(Q)→ Set. It is easy to see that
Coend(UQ) is equally the coendomorphism monad of the object idSet ∈X. By transposing under
the adjunction (–) ◦GQ � (–) ◦UQ, we see thatX is isomorphic to the co-Kleisli categoryX′ of the
comonad (–) ◦Q on [Set, Set], and the coendomorphism monad of idSet in X′ is easily seen to be
Q◦. Thus, Q◦ ∼= Coend(UQ), and tracing through the correspondences shows this isomorphism to
be given as in the statement of the result. �

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

392 Richard Garner

5. Calculating the Cosemantics Functor
5.1. Cosemantics is valued in presheaf comonads
In this section, we give an explicit calculation of the values of the cosemantics functor from
monads to comonads. As a first step towards this, we observe that:

Proposition 5.1 The cosemantics functor Cosem : Mnda(Set)op→ Cmda(Set) sends every monad
to a presheaf comonad; whence it admits a factorisation to within isomorphism throughQ(–) : Cof→
Cmda(Set).

Proof. Note that the second clause follows from the first and Proposition 3.7. To prove
the first, let T ∈Mnda(Set). To show that Cosem(T) is a presheaf comonad, it suffices by
Proposition 3.2 to prove that its underlying endofunctor preserves connected limits. Since this
endofunctor is engendered by TU : TSet→ Set and its (limit-preserving) right adjoint, it suffices
to show that TU preserves connected limits. In fact, it creates them: for indeed, since a T-comodel S
in Set involves co-operations [[t]] : S→A× S subject to suitable equations, and since each functor
of the formA× (–) preserves connected limits, it follows easily that, for any connected diagram of
T-comodels, the limit of the diagram of underlying sets bears a unique comodel structure making
it the limit in the category of comodels. �

What we would like to do is to give an explicit description of the factorisation of this propo-
sition. Thus, at the level of objects, we will describe for each accessible monad T on Set a small
category BT such that Cosem(T)∼=QBT ; or equally, in light of Proposition 3.10, such that we have
an isomorphism in CAT/Set:

(23)

We term this category BT the behaviour category of T.

5.2. Behaviours and the final comodel
The first step is to describe the object-set of the behaviour category BT associated with an acces-
sible monad T. By considering (23), we see that this object-set can be found as the image under
UBT of the final object of BT-Set: and so equally as the underlying set of the final comodel of
T. While there are many possible constructions of the final comodel – see, for example, [32,
Theorem 2.2] or [27, Lemma 4.6] – we would like to give a new one which fully exploits the
fact that the structures we are working with are comodels.

As is well known, when looking at coalgebraic structures, characterising the final object is
bound up with answering the question of when states have the same observable behaviour. For
example, if (g, n) : S→V × S and (g′, n′) : S′ →V × S′ are comodels of the theory of V-valued
input, we may say that states s ∈ S and s′ ∈ S′ are behaviourally equivalent if they yield the same
stream of values:

(g(s), g(n(s)), g(n(n(s))), . . .)= (g′(s′), g′(n′(s′)), g′(n′(n′(s′))), . . .) .
We may restate this property in more structural ways. Indeed, states s ∈ S and s′ ∈ S′ are
behaviourally equivalent just when any of the following conditions holds:

• They are related by some bisimulation, i.e., a relation R⊆ S× S′ whose projectionmorphisms
S← R→ S′ can be lifted to a span of comodels S← R→ [S′].

• They become equal in some comodel S′′; i.e., we can find a cospan of comodel homomor-
phisms q : S→ S′′ ← S′ : q′ such that q(s)= q′(s′);

• They become equal in the final comodel VN.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 393

The correspondence between these conditions holds in much greater generality; see, for exam-
ple [35]. However, for the comodels of an accessible monad T, there is a further, yet more intuitive,
formulation: s and s′ are behaviourally equivalent if, in running any T-computation t ∈ T(A), we
obtain the sameA-value by running t with S from initial state s, as by running t with S′ from initial
state s′. More formally, we have the following definition, which appears to be novel – though it is
closely related to [26]’s notion of comodel bisimulation.

Definition 5.2 (Behaviour of a state). Let T be an accessible monad and S a T-comodel. The
behaviour βs of a state s ∈ S is the family of functions

(βs)A : T(A)→A t
→ π1([[t]]S(s)) .
Given T-comodels S and S′, we say that states s ∈ S and s′ ∈ S′ are operationally equivalent (written
s∼o s′) if βs = βs′ .

We now show that operational equivalence has the same force as the other notions of
behavioural equivalence listed above.

Proposition 5.3 Let T be an accessible monad and let S, S′ be T-comodels in Set. For any states s ∈ S
and s′ ∈ S′, the following conditions are equivalent:

(i) s and s′ are operationally equivalent;
(ii) s R s′ for some bisimulation R⊆ S× S′ between S and S′;
(iii) q(s)= q′(s′) for some cospan of homomorphisms q : S→ S′′ ← S′ : q′;
(iv) f (s)= f ′(s′) for f : S→ BT← S′ : f ′ the unique morphisms to the final comodel.

Proof. For (i)⇒ (ii), we show that operational equivalence∼o is a bisimulation between S and
S′; this means showing that, if u1 ∼o u2 and t ∈ T(A), then the co-operations [[t]]S(s1)= (a1, s1′)
and [[t]]S′(s2)= (a2, s2′) satisfy a1 = a2 ∈A and s1′ ∼o s2′ ∈ S. We have a1 = a2 since s1 ∼o s2. To
show s1′ ∼o s2′, consider any term u ∈ T(B), and observe that by (the dual of) Lemma 2.13 we
have

[[t(λa. u)]](s1)= [[u]](s1′) and [[t(λa. u)]](s2)= [[u]](s2′) .
Since s1 ∼o s2, the left-hand sides above have the same first component; whence the same is true
for the right-hand sides, so that s1′ ∼o s2′ as desired.

The next two implications are standard. For (ii)⇒ (iii), we take S→ S′′ ← S′ to be the pushout
of S← R→ S′; and for (iii)⇒ (iv), we postcompose S→ S′′ ← S′ with the unique comodel map
S′′ → BT. Finally, for (iv)⇒ (i), note by the definition of comodel homomorphism that if we have
h : S→ S′ then βs = βh(s) for all s ∈ S. So if f (s)= f ′(s′) as in (iv) then βs = βf (s) = βf ′(s′) = βs′ and
so s∼o s′ as desired. �

From this result, we see that a final T-comodel can have at most one element of a given
behaviour β . In fact, in the spirit of [21, Theorem 4], we may characterise the final comodel as
having exactly one element of each behaviour β which is admissible, in the sense of being the
behaviour of some element of some comodel. It turns out that this requirement can be captured
purely algebraically.

Notation 5.4 Let T be an accessible monad. Given terms t ∈ T(A) and u ∈ T(B), we write t� u
for the term t(λa. u) ∈ T(B). Noting that� is an associative operation, we may write t� u� v
for (t� u)� v= t� (u� v), and so on. Given t ∈ T(A), we also write t̃ ∈ T1 for the unary term
t(λa. ∗) (where ∗ is the unique element of 1). Note that t̃ and t� (–) are interdefinable via

t̃= t� id and t� u= t̃(u) .
The intuition is that, if t and u are programs returning values in A and B, then t� u is the

program which first performs t, then discards the return value and continues as u. The notation
we use is borrowed from Haskell, where t >> u is used with exactly this sense.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

394 Richard Garner

Definition 5.5 (Admissible behaviour). By an admissible behaviour for T, we mean a natural
transformation β : T⇒ idSet whose components satisfy the equation

βA(t(u))= βA(t� uβB(t)) for all t ∈ TB and u ∈ (TA)B. (24)

We may drop the subscript in “βA” where this does not lead to ambiguity.

The condition in (24) is intuitively reasonable: it says that, if the result of running t ∈ T(B)
is b ∈ B, then the result of running t(u) ∈ T(A) coincides with that of running t, discarding the
return value, and then running ub.

As for naturality of β , this says in more elementary terms that, for any function f : B→A and
any t ∈ T(B), we have βA(t(λb. f (b)))= f (βB(t)). In particular, when f is the function constant at
a ∈A, this reduces to the requirement that

βA(t� a)= a for all t ∈ T(B) and a ∈A ; (25)

and in fact, this suffices to recover the full naturality, since by applying (24) and (25) in succession
we obtain βA(t(λb. f (b)))= βA(t� f (βB(t)))= f (βB(t)).

Remark 5.6 If we have a presentation of the accessible monad T by an algebraic theory T, then we
can use (24) and induction on the structure of T-terms to show that an admissible behaviour β is
determined by the values β(σ1� · · ·� σn) ∈ |σn| for each non-empty list σ1, . . . , σn of generat-
ing operations in � (where each operation σi is identified with the corresponding term σi(λa. a) ∈
T(|σi|)). This is practically useful in computing the admissible behaviours of a theory.

We now describe the final comodel of T. The key to doing will be the fact, as expressed by the
following lemma, that a general comodel is completely determined by the behaviours associated
with each state together with the action on states induced by each unary operation of T.

Notation 5.7 Given a T-comodel S, a state s ∈ S and a unary operation m ∈ T(1), the cointerpre-
tation [[m]]S(s) is an element of 1× S; by abuse of notation, we identify this element with its second
projection in S.

Lemma 5.8 Let S be a T-comodel. For any t ∈ T(A) and s ∈ S we have
[[t]]S(s)= (βs(t), [[t̃]]S(s))

where βs is the behaviour of the state s.

Proof. By definition of βs, the first component of [[t]]S(s) is βs(t). As for the second compo-
nent s′ ∈ S, if we write ∗ for the unique element of 1, then it follows from Lemma 2.13(i) that
[[t̃]]S(s)= [[t(λa. ∗)]]S(s)= [[∗]]S(s′)= (∗, s′), so that under the convention of Notation 5.7 we have
s′ = [[t̃]]S(s). �
Proposition 5.9 The final comodel BT of an accessible monad T is the set of admissible behaviours
with [[t]]BT(β)= (β(t), ∂tβ), where ∂tβ(u)= β(t� u).

Proof. Since every accessible monad can be presented by some algebraic theory, it follows from
Remark 5.6 that the admissible behaviours of T do indeed form a set. We must also show [[t]] is
well-defined, i.e., that if β is admissible, then so is ∂tβ . First, we verify naturality of ∂tβ , which by
the above discussion will follow from (25) for ∂tβ , which holds since:

(∂tβ)(u� a)= β(t� (u� a))= β((t� u)� a)= a .

We now verify (24), which holds by the calculation that:

(∂tβ)(u(v))= β(t� u(v))= β((t� u)(v))= β(t� u� vβ(t�u))=(∂tβ)(u� v∂tβ(u)) .

So ∂t is a well-defined operation on admissible behaviours. We now show BT is a comodel,
i.e., that the conditions of (10) hold. For the first condition [[a]]BT = νa, we must show that

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 395

(β(a), ∂aβ)= (a, β) for all β ∈ BT: but β(a)= a by (24), while that ∂aβ = β is clear since a� (–)
is the identity operator. For the second condition in (10), we must show for any β ∈ BT that
[[t(u)]](β)= (β(t(u)), ∂t(u)β) is equal to

〈[[ua]]〉a∈A([[t]](β))= 〈[[ua]]〉a∈A(β(t), ∂tβ)= [[uβ(t)]](∂tβ)= (∂tβ(uβ(t)), ∂uβ(t) (∂tβ)) .

But in the first component β(t(u))= β(t� uβ(t))= ∂tβ(uβ(t)); while in the second,

∂t(u)β(v)= β(t(u)� v)= β(t(λa. ua� v))
= β(t� uβ(t)� v)= ∂tβ(uβ(t)� v)= (∂uβ(t) (∂tβ))(v)

as desired. So BT is a comodel.
We now show that, for any comodel S, there is a homomorphism β(–) : S→ BT given by s
→ βs.

For this to be well-defined, each βs must be an admissible behaviour. By Lemmas 5.8 and 2.13(i),
we have for any t ∈ T(B) and u ∈ T(A)B that

[[t(u)]]S(s)= [[uβs(t)]]S([[t̃]]S(s))= [[t̃.uβs(t)]]S(s)= [[t� uβs(t)]]S(s)

which on taking first components gives (24). Moreover, when u above is constant at a bare variable
a ∈A, we have by Lemma 2.13(i) that

[[t� a]]S(s)= [[a]]S([[t̃]]S(s))= (a, [[t̃]]S(s))

so that on first components we have βs(t� a)= a as required for (25).
We now show that β(–) is a homomorphism S→ BT; for which we calculate

(1× β(–))[[t]]S(s)= (1× β(–))(βs(t), [[t̃]]S(s))= (βs(t), β[[t̃]]S(s))

= (βs(t), ∂t(βs))= [[t]]BT(βs) .

It remains to show that β(–) is the unique homomorphism S→ BT. But since [[t]]BT(β)=
(β(t), ∂tβ), the behaviour of any β ∈ BT is β itself; and since as in Proposition 5.3, homomor-
phisms preserve behaviour, any homomorphism S→ BT must necessarily send s to βs. �
Example 5.10 While the final comodels of the algebraic theories considered so far are well known,
we illustrate the construction via admissible behaviours, exploiting Remark 5.6 to compute them in
each case.

• For V-valued input, an admissible behaviour β is determined by the values Wn :=
β((read�)nread) ∈V for each n ∈N. But since the theory has no equations, any such
choice of values W ∈VN yields an admissible behaviour. Thus, the final comodel is VN, and we
can read off from Proposition 5.9 that [[read]] : VN→V ×VN is given by W
→ (W0, ∂W),
where (∂W)i =Wi+1.

• For V-valued output, an admissible behaviour β is determined by the trivial choices β(putv1�· · ·� putvn) ∈ 1; whence there is a unique admissible behaviour, and the final comodel is the
one-element set with the trivial co-operations.

• For V-valued read-only state, since get� (–) is the identity operator, an admissible behaviour
is uniquely determined by the value β(get) ∈V. Any such choice yields an admissible
behaviour, and so the final comodel is V with the co-operation [[get]]=� : V→V ×V.

• For V-valued state, get� (–) is again the identity operator, and so an admissible behaviour
β is determined by the values β(putv1� · · ·� putvn� get) ∈V for v1, . . . , vn ∈V. When
n> 0, the put axioms force β(putv1� · · ·� putvn� get)= vn and so β is uniquely deter-
mined by β(get) ∈V. Thus, again the final comodel is V, with the same [[get]] as before, and
with [[put]]= π1 : V ×V→V.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

396 Richard Garner

5.3. The behaviour category of an accessible monad
We saw in Lemma 2.13 above that if T is an accessible monad, then any T-comodel S in Set is
completely determined by the two functions

S→ BT S× T(1)→ S
s
→ βs (s,m)
→ [[m]]S(s) .

(26)

giving the behaviour of each state, together with what we might call the dynamics of the comodel:
the right action of unary operations on states. However, these two structures are not independent.
One obvious restriction is that the right action by m ∈ T(1) must send elements of behaviour β
to elements of behaviour ∂mβ . However, due to (24) there is a further constraint; the following
definition is intended to capture this.

Definition 5.11 (β-equivalence). Let T be an accessible monad, and let β be an admissible
T-behaviour. We say that unary operations m, n ∈ T(1) are atomically β-equivalent if there exists
v ∈ T(A) and m′, n′ ∈ T(1)A such that

m= v(m′) and n= v(n′) and m′β(v) = n′β(v) . (27)

We write ∼β for the smallest equivalence relation on T(1) which identifies atomically β-equivalent
terms. Alternatively, ∼β is the smallest equivalence relation such that t(m)∼β (t�mβ(t)) for all
t ∈ T(A) and m ∈ T(1)A.
Remark 5.12 If we have a presentation of the accessible monad T by an algebraic theoryT= (�, E),
then we may simplify the task of computing the equivalence relation∼β by observing that, by induc-
tion on the structure of T-terms, each m ∈ T(1) is ∼β -equivalent to σ1� · · ·� σn� id for some
σ1, . . . , σn ∈�.

The motivation for this definition is that ∼β will identify two unary operations if and only if
they act in the same way on any state of behaviour β . The “only if” direction is part (iii) of the
following lemma; the “if” will be proved in Corollary 5.18.

Notation 5.13 Ifm ∈ T(1) and t ∈ T(A), we writem.t for the substitutionm(t).

Lemma 5.14 Let β be an admissible behaviour of the accessible monad T, and let m, n, p ∈ T(1).

(i) If m∼β n then m.p∼β n.p;
(ii) If m∼∂pβ n then p.m∼β p.n;
(iii) If s ∈ S is a state of behaviour β and m∼β n, then [[m]]S(s)= [[n]]S(s).

Proof. For (i), ifm and n are atomically β-equivalent via v,m′, n′, thenm.p and n.p are so via v,
(m′a.p : a ∈A) and (n′a.p : a ∈A); whence m∼β n implies m(p)∼β n(p). (ii) is similar, observing
that ifm,n are atomically ∂pβ-equivalent via v,m′, n′, then p.m and p.n are atomically β-equivalent
via p.v,m′, n′. Finally, for (iii), if m, n are atomically β-equivalent, then writing s′ = [[v� id]](s)
we have

[[m]](s)= [[v(m′)]](s)= [[m′β(v)]](s′)= [[n′β(v)]](s′)= [[v(n′)]](s)= [[n]](s) . �
With this in place, we can now give the main definition of this section:

Definition 5.15 (Behaviour category of a monad). Let T be an accessible monad. The behaviour
category BT of T has admissible behaviours as objects, and hom-sets

BT(β , β ′)= {m ∈ T(1) | β ′ = ∂mβ}/∼β .

Identities are given by the neutral element of T(1), and the composite of m : β→ β ′ and n : β ′ → β ′′
is m.n : β→ β ′′; note this is well-defined by Lemma 5.14(i–ii).

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 397

Theorem 5.16 Given an accessible monad T with behaviour category BT, the category of
T-comodels is isomorphic to the category of left BT-sets via an isomorphism commuting with the
forgetful functors to Set:

(28)

For a comodel S, the corresponding left BT-set XS has underlying set S, projection to BT given by the
behaviour map β(–) : S→ BT, and action given by

(s, βs
m−→ ∂mβs)
→ [[m]]S(s) ; (29)

for a left BT-set (X, p, ∗), the corresponding comodel SX has underlying set X and
[[t]]SX : x
→ (β(t), t̃ ∗ x) for all x ∈ p−1β . (30)

Proof. We concentrate on giving the isomorphism of categories at the level of objects; indeed,
since it is to commute with the faithful functors to Set, to obtain the isomorphism on arrows we
need only check that a function lifts along TU just when it lifts along UBT , and we leave this to the
reader.

Now, on objects, one direction is easy: the action map (29) of the presheaf associated with a
comodel is well defined by Lemma 5.14(iii) and is clearly functorial. In the converse direction, we
must prove that the SX associated with a left BT-set X satisfies the comodel axioms in (10). For
the first axiom, we have that [[a]](s)= (β(a), ã ∗ s)= (a, s)= νa(s) for all s ∈ p−1β , since β(a)= a
and ã= id ∈ T(1). For the second, given s ∈ p−1β we must show [[t(u)]](s)= (β(t(u)), t̃(u) ∗ s) is
equal to

〈[[ua]]〉a∈A([[t]](s))= 〈[[ua]]〉(β(t), t̃ ∗ s)= [[uβ(t)]](t̃ ∗ s)= (∂tβ(uβ(t)), ũβ(t) ∗ (t̃ ∗ s)) .
But in the first component β(t(u))= β(t� uβ(t))= ∂tβ(uβ(t)); while in the second,
since we have ũβ(t) ∗ (t̃ ∗ s)= (ũβ(t) ◦ t̃) ∗ s= t̃(ũβ(t)) ∗ s, it suffices to show that we have
t̃(ũβ(t))= t̃(u) : β→ ∂tβ in BT; but

t̃(ũβ(t))= t(λa. ũβ(t)) and t̃(u)= t(λa. ũa)
and these two terms are clearly atomically β-equivalent, and so equal as morphisms in BT. This
shows that SX is a T-comodel.

It remains to show that these two assignments are mutually inverse. For any comodel S, the
comodel SXS clearly has the same underlying set, but also the same comodel structure, since

[[t]]SXS (s)= (βs(t), t̃ ∗ s)= (βs(t), [[t� id]]S(s))= [[t]]S(s) .
On the other hand, for any BT-set X, the BT-set XSX has the same underlying set, but also the
same projection to BT, since (30) exhibits each x ∈ SX as having behaviour p(x); and the same
action map, sincem ∗XSX

s= [[m]]SX (s)=m ∗X s. �

Corollary 5.17 Let T be an accessible monad. For each T-admissible behaviour β, there exists a
comodel β freely generated by a state of behaviour β; it has underlying set T(1)/∼β , co-operations
[[t]]β (m)= (β(m.t),m.t̃), and generating state id ∈ β. Morphisms β→ β ′ in the behaviour category
of T are in functorial bijection with comodel homomorphisms β ′ → β.

Proof.We obtain β as the image of the representable functor B(β , –) under the equivalences of
(19) and (28). The final clause follows from the Yoneda lemma. �

We now tie up a loose end by proving the converse to Lemma 5.14(iii).

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

398 Richard Garner

Corollary 5.18 Let T be an algebraic theory, β an admissible T-behaviour, and m, n ∈ T(1). We
have m∼β n if, and only if, for every T-comodel S and state s ∈ S of behaviour β, we have [[m]]S(s)=
[[n]]S(s).

Proof. The “only if” direction is Lemma 5.14(iii). For the “if” direction, consider the T-comodel
β classifying states of behaviour β and the state of β given by id ∈ T(1)/∼β . By our assumption
(and Notation 5.7), we have that m= [[m]]β(id)= [[n]]β(id)= n in the underlying set T(1)/∼β of
β , i.e.,m∼β n as desired. �
Remark 5.19 In computing the comodel β classifying an admissible behaviour β, the main problem
is to determine suitable equivalence-class representatives for elements of the underlying set T(1)/∼β .
Suppose we have a subset {id} ⊆ S⊆ T(1) which we believe constitutes a set of such representatives.
By Corollary 5.17, a necessary condition for this belief to be correct is that S underlie a comodel S
with

[[t]]S(s)= (β(s.t), s′) for some s′ ∈ S with s′ ∼β s.t̃ ; (31)
of course, this S will then be the desired classifier for states of behaviour β.

In fact, the preceding result tells us that this necessary condition is also sufficient. Indeed, if
S⊆ T(1) bears a comodel structure satisfying (31), then for each m ∈ T(1) we have [[m]]S(id) ∈ S
in the∼β-equivalence class ofm. So S contains at least one element from each∼β-classes of T(1).
In fact, it contains precisely one such element. For indeed, if s �= s′ ∈ S, then [[s]]S(id)= s �= s′ =
[[s′]]S(id), whence s�β s′ by Corollary 5.18.
Example 5.20 For each of our running examples of algebraic theories, we compute the comodels
classifying each admissible behaviour, and so the behaviour category. For these examples, it is simple
enough to find the classifying comodels directly without exploiting Remark 5.19.

• For V-valued input, the object-set of the behaviour category is VN, and for each behaviour
W ∈VN, the comodel W classifying this behaviour may be taken to have underlying set N
with co-operation [[read]](n)= (Wn, n+ 1); the universal state of behaviour W is then 0 ∈W.
MorphismsW→W′ in the behaviour category correspond to states ofW of behaviour W′, and
these can be identified with natural numbers i such that W′n =Wn+i for all k ∈N.

• For V-valued output, the behaviour category has a single object ∗, and the comodel V∗ clas-
sifying this unique behaviour has as underlying set the free monoid V∗, with co-operations
[[writev]](W)=Wv; the universal state is the empty word ε ∈V∗. Endomorphisms of ∗ in the
behaviour category correspond to states of V∗, so that the behaviour category is precisely the the
one-object category corresponding to the monoid V∗.

• For V-valued read-only state, the behaviour category has object-set V, and the comodel clas-
sifying v ∈V is the one-element comodel v with [[get]](∗)= (v, ∗). Clearly, there are no
non-identity homomorphisms between such comodels, so that the behaviour category is the
discrete category on the set V.

• For V-valued state, the behaviour category again has object-set V, while the comodel v classify-
ing any v ∈V is the final comodelV, with universal state v. Morphisms v→ v′ in the behaviour
category thus correspond to comodel homomorphisms V→V, and since V is final, the only
such is the identity. Thus, the behaviour category is the codiscrete category ∇V on V, with a
unique arrow between every two objects.

5.4. Functoriality
By Theorem 5.16, the assignment T
→BT is the action on objects of the desired factorisation of the
cosemantics functor Mnda(Set)op→ Cmda(Set) through Q(–) : Cof→ Cmda(Set). We conclude
this section by describing the corresponding action on morphisms.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 399

We start with a preliminary lemma; in its statement, recall from Example 2.27 how a monad
morphism f : T→ R induces a functor on comodels f ∗ : RSet→ TSet.

Lemma 5.21 Let f : T→ R in Mnda(Set), and let S be a R-comodel. If the state s ∈ S has
R-behaviour β, then the state s ∈ f ∗S has T-behaviour f ∗β where (f ∗β)(t)= β(f (t)).

Proof. For any t ∈ T(A), we have π1([[t]]f ∗S(s))= π1([[f (t)]]S(s))= β(f (t)). �
Proposition 5.22 Let T and R be accessible monads on Set. For each monad morphism f : T→ R,
there is a cofunctor Bf : BR�BT which acts on objects by β
→ f ∗β; and which, on morphisms,
given β ∈BR, acts by sending m : f ∗β→ ∂m(f ∗β) in BT to (Bf)β(m) := f (m) : β→ ∂f (m)β in BR.

Proof. f ∗ : BR�BT is well-defined on objects by the preceding lemma. For well-definedness on
morphisms, wemust show thatm∼f ∗β n inT(1) implies f (m)∼β f (n) inR(1). Clearly it suffices to
do so whenm and n are atomically f ∗β-equivalent via terms v ∈ T(A) andm′, n′ ∈ T(1)A satisfying

m= v(m′) and n= v(n′) and m′f ∗β(v) = n′f ∗β(v) .

But since f ∗β(v)= β(f (v)), it follows that f (v) ∈ R(A) and f (m′(–)), f (n′(–)) ∈ R(1)A witness
f (m) and f (n) as atomically β-equivalent, as required. We must also check the three cofunc-
tor axioms. The first holds since f ∗(∂f (m)β)(t)= (∂f (m)β)(f (t))= β(f (m).f (t))= β(f (m.t))=
f ∗β(m.t)= ∂m(f ∗β)(t). The other two are immediate since f preserves substitution. �

We now prove that the cofunctor Bf of Proposition 5.22 does indeed describe the action on
morphisms of the cosemantics functor.

Theorem 5.23 The functor B(–) : Mnda(Set)op→ Cof taking each accessible monad T to its
behaviour category BT, and each map of accessible monads f : T→ R to the cofunctor Bf : BR�BT
of Proposition 5.22, yields a within-isomorphism factorisation

Proof. It suffices to show that, for any map of accessible monads f : T→ R, the associated
cofunctor Bf : BR�BT renders commutative the square

whose horizontal edges are the isomorphisms of Theorem 5.16, whose left edge is as in Example
2.27 and whose right edge is as in Definition 3.11. But indeed, given an R-comodel S, its image
around the lower composite is by Lemma 5.21 the BT-set with underlying set S and projection
and action morphisms

S→ BT
∑

s∈S T(1)/∼f ∗(βs)→ S
s
→ f ∗(βs) (s,m)
→ [[f (m)]]S(s) .

On the other hand, the upper composite first sends S to the BR-set with underlying set S and
projection and action maps

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

400 Richard Garner

S→ BR
∑

s∈S R(1)/∼βs→ S
s
→ βs (s, n)
→ [[n]]S(s) ;

and then applies�Bf , which, by the definition of�(–) and Bf , yields the same BT-set as above. �

Example 5.24 Let h : V→W be a function, and let f : T1→T2 be the associated interpretation
of V-valued output into W-valued state of Example 2.8. The induced cofunctor f ∗ : BT2→BT1 has
as domain the codiscrete category on W, and as codomain, the monoid V∗ seen as a one-object
category. On objects, f ∗ acts in the unique possible way; while on morphisms, given w ∈BT2 and a
map f ∗(w)→∗ in BT1 – corresponding to an element v1 . . . vn ∈V∗ – we have f ∗w(v1 . . . vn) in BT2
given by the unique map w→ vn.

Example 5.25 Let h : W→V be a function between sets, and let f : T1→T2 be the associated
interpretation of V-valued read-only state into W-valued state of Example 2.9. The induced cofunc-
tor f ∗ : BT2→BT1 has as domain the codiscrete category on W, and as codomain the discrete
category on V. On objects, f ∗ acts by w
→ h(v), while on morphisms it acts in the unique possible
way.

6. Calculating the Costructure Functor
6.1. The behaviour category of an accessible comonad
In this section, we give an explicit calculation of the costructure functor from comonads to
monads. Much as for the cosemantics functor, we will see that cosemantics takes its values in
presheaf monads, and will explicitly associate to each accessible comonad Q a small category BQ,
the behaviour category, such that Costr(Q) is the presheaf monad of BQ. We begin with some
preliminary observations.

Notation 6.1 Let Q be an accessible comonad on Set. For each x ∈Q1, we write ιx : Qx→Q for
the inclusion of the subfunctor with

Qx(A)= {a ∈QA : (Q!)(a)= x in Q1} .
We also write εx : Qx→ 1 and δx : Qx→QxQ for the natural transformations such that εx = ε ◦ ιx
and ιxQ ◦ δx = δ ◦ ιx; to see that δ ◦ ιx does indeed factor through ιxQ, we note that, for any a ∈
QxA, the element δ(a) ∈QQA satisfies (Q!)(δ(a))= (Q!)(Qε(δ(a)))= (Q!)(a)= x so that δ(a) ∈
QxQA as desired.

Lemma 6.2 Let Q be an accessible comonad on Set.

(i) The inclusions ιx : Qx→Q exhibit Q as the coproduct
∑

x∈Q1 Qx;
(ii) Any natural transformation f : Qx→∑

i Fi into a coproduct factors through exactly one
coproduct injection νi : Fi→∑

i Fi.

Proof. (i) holds as each QA is the coproduct of the QxA’s, and coproducts in [Set, Set] are
componentwise. For (ii), the component f1 : {x}→∑

i∈I Fi1 of f clearly factors through just one
νi; now naturality of f with respect to the unique morphisms ! : A→ 1 shows that each fA factors
through just the same νi. �
Definition 6.3 (Behaviour category of a comonad) Let Q be an accessible comonad on Set. The
behaviour category of Q is the small category BQ in which:

• Objects are elements of Q1;
• Morphisms with domain x ∈Q1 are natural transformations τ : Qx→ id, and the codomain
of such a τ is determined by the following factorisation, whose (unique) existence is asserted by
Lemma 6.2:

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 401

(32)

• The identity on x ∈Q1 is εx : Qx→ id;
• Binary composition is given as follows, where τ � is the factorisation in (32):

(Qcod(τ)
υ−→ id) ◦ (Qx

τ−→ id)= (Qx
τ �−→Qcod(τ)

υ−→ id) .

The axioms expressing unitality and associativity of composition follow from the familiar and
easily-checked identities εcod(τ) ◦ τ � = τ , ε�x = idQx and (υ ◦ τ �)� = υ� ◦ τ �.

We now show that the costructure monad associated with an accessible comonad Q is iso-
morphic to the presheaf monad TBQ . In light of Proposition 4.13, it suffices to construct an
isomorphism between TBQ and the dual monad Q◦ of Definition 4.11.

Proposition 6.4 Let Q be an accessible comonad. For any τ : Q→A · id and any x ∈Q1, there is a
unique ax ∈A and τx : Qx→ id for which we have a factorisation

(33)

In this way, we obtain a monad isomorphism θ : Q◦ ∼= TBQ with components

θA : [Set, Set](Q,A · id)→∏
x∈BQ ((BQ)x ×A)

τ
→ λx. (τx, ax) .
(34)

Proof.The existence and uniqueness of the factorisation (33) is a consequence of Lemma 6.2(ii);
now that the induced morphisms (34) constitute a natural isomorphism follows from Lemma
6.2(i) and the Yoneda lemma. It remains to show that these morphisms are the components of a
monad isomorphism Q◦ ∼= TBQ .

For compatibility with units, we have on the one hand that ηTBQA (a)= λx. (εx, a). On the
other hand, ηQ

◦
A (a)= νa ◦ ε : Q→ id→A · id, whose factorisation as in (33) is clearly given by

η
Q◦
A (a) ◦ ιx = νa ◦ εx, so that θA(ηQ◦A (a))= λx. (εx, a) as desired.
We now show compatibility with multiplication. To this end, consider an element σ : Q→

Q◦A · id of Q◦Q◦A. For each x ∈Q1, we have an element τx ∈Q◦A and a natural transformation
σx : Qx→ id rendering commutative the square to the left in

(35)

Considering now τx ∈Q◦A, we have for each y ∈Q1 an element axy ∈A and τxy : Qy→ id render-
ing commutative the square above right. With this notation, the composite μTBQA ◦ (θθ)A acts on
σ ∈Q◦Q◦A via

σ
(θθ)A
−−−−→ λx. (σx, λy. (τxy, axy))

μ
TBQA
−−−−→ λx. (τx,cod(σx) ◦ σ�x , ax,cod(σx)) .

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

402 Richard Garner

We must show that this is equal to the image of σ under the composite θA ◦μQ◦A . From the
description of Q◦ in Definition 4.11, we can read off that μQ

◦
A (σ) ∈Q◦A is the lower composite in

the diagram

where ev is unique such that ev ◦ ντ = τ for all τ ∈Q◦A. To calculate the image of μQ
◦

A (σ) under
θA, we observe that, in the displayed diagram, the far left region is the definition of δx, the two
upper squares are instances of (32) and (33), the lower square is (–)Q of another instance of
(33), and the triangle is the definition of ev. So by unicity in (33), we have that θA(μQ

◦
A (σ))=

λx. (τx,cod(σx) ◦ σ�x , ax,cod(σx)) as required. �

6.2. Functoriality
We now describe the manner in which the passage from an accessible comonad to its behaviour
category is functorial.

Notation 6.5 Let f : P→Q be a morphism of accessible comonads on Set and let x ∈ P1.We write
fx : Px→Qfx for the unique natural transformation (whose unique existence follows from Lemma
6.2) such that f ◦ ιx = ιfx ◦ fx : Px→Q.

Proposition 6.6 Each morphism f : P→Q of accessible comonads on Set induces a cofunctor
Bf : BP�BQ on behaviour categories with action on objects f1 : P1→Q1, and with, for each
x ∈ P1, the action on homs (BQ)fx→ (BP)x given by τ
→ τ ◦ fx.

Proof.We first dispatch axiom (ii) for a cofunctor, which follows by the calculation that

ε
Q
fx ◦ fx = εQ ◦ ιfx ◦ fx = εQ ◦ f ◦ ιx = εP ◦ ιx = εPx : Px→ id.

We next deal with axiom (i). Let τ : Qfx→ id be an element of (BQ)fx with image τ ◦ fx in (BP)x.
We must show that y := cod(τ ◦ fx) is sent by f to z := cod(τ). To this end, consider the diagram
to the left in:

The front and back faces are instances of (32), the left face commutes since f is a comonad mor-
phism, and the bottom face commutes by naturality. We can thus read off that the outside of
the diagram to the right commutes; as such, its upper composite (clearly) factors through ιz, but

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 403

also through ιfy, since f ◦ ιy = ιfy ◦ fy: whence by Lemma 6.2(ii) we have z= f (y), giving the first
cofunctor axiom.

Finally, we address cofunctor axiom (iii). Note that we can now insert fy into the diagram right
above; whereupon the right square commutes by definition of fy, and the left square since it does so
on postcomposition by the monic ιz. Postcomposing this left-hand square with some σ : Qz→ id
yields the final cofunctor axiom. �
Proposition 6.7 For each morphism f : P→Q of accessible comonads, we have a commuting
square of monad morphisms:

(36)

Proof. For each τ : Q→A · id in Q◦A, and each x ∈ P1, we have a diagram

whose right square is as in Proposition 6.4, and whose left square is the definition of fx. It thus
follows that the image of τ under (TBf)A ◦ θQA is λx. (afx, τfx ◦ fx). On the other hand, by unicity in
Proposition 6.4, the image of f ◦(τ)= τ ◦ f ∈ P◦A under θPA : P◦A→ TBPA is also λx. (afx, τfx ◦ fx),
as desired. �

Combining this result with Proposition 4.13, we obtain:

Theorem 6.8 The functorB(–) : Cmda(Set)→ Cof taking an accessible comonadQ to its behaviour
category BQ, and a map of accessible comonads f : P→Q to the cofunctor Bf : BP�BQ of
Proposition 6.7, yields a within-isomorphism factorisation

7. Idempotency of Costructure–Cosemantics
So far, we have seen that cosemantics takes values in presheaf comonads, and costructure takes val-
ues in presheaf monads; to complete our understanding of the costructure–cosemantics adjunc-
tion, we now show that further application of either adjoint simply interchanges a presheaf monad
with its corresponding presheaf comonad. More precisely, we will show that the costructure–
cosemantics adjunction is idempotent, with the presheaf monads and comonads as fixpoints to
either side.

7.1. Idempotent adjunctions
We begin by recalling standard category-theoretic background on fixpoints and idempotency for
adjunctions. To motivate this, recall that any adjunction between posets induces an isomorphism

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

404 Richard Garner

between the sub-posets of fixpoints to each side. Similarly, any adjunction of categories restricts
to an adjoint equivalence between the full subcategories of fixpoints in the following sense:

Definition 7.1 (Fixpoints). Let L� R : D→ C be an adjunction. A fixpoint to the left is an object
X ∈D at which the counit map εX : LRX→ X is invertible; a fixpoint to the right is Y ∈ C for which
ηY : Y→ RLY is invertible. We write Fix(LR) and Fix(RL) for the full subcategories of fixpoints to
the left and right.

In the posetal case, the fixpoints to the left and the right are, respectively, coreflective and
reflective in the whole poset. This is not true in general for adjunctions between categories, but it
is true in the following situation:

Definition 7.2 (Idempotent adjunction). An adjunction L� R : D→ C is called idempotent if it
satisfies any one of the following equivalent conditions:

(i) Each RX is a fixpoint;
(ii) R inverts each counit component;
(iii) The monad RL is idempotent;
(iv) Each LY is a fixpoint;
(v) L inverts each unit component;
(vi) The comonad LR is idempotent.

The equivalence of these conditions is straightforward and well known; for the reader who has
not seen it, we leave the proof as an instructive exercise. Equally straightforward are the following
consequences of the definition:

Proposition 7.3 If the adjunction L� R : D→ C is idempotent, then:

(i) X ∈D is a fixpoint if and only if it is in the essential image of L;
(ii) Y ∈ C is a fixpoint if and only if it is in the essential image of R;
(iii) The fixpoints to the left are coreflective inD via X
→ LRX.
(iv) The fixpoints to the right are reflective in C via Y
→ RLY;

7.2. Presheaf monads and presheaf comonads are fixpoints
We aim to show that the costructure–cosemantics adjunction (21) is idempotent, with the
presheaf monads and comonads as the fixpoints. We first show that costructure and cosemantics
interchange a presheaf monad with the corresponding presheaf comonad.

Proposition 7.4 We have isomorphisms of comonads, natural in B, of the form
αB : QB→Cosem(TB) (37)

characterised by the fact that they induce on categories of Eilenberg–Moore coalgebras the functor
B-Set→ TBSet sending the left B-set (X, p, ∗) to the TB-comodel X with

[[λb. (fb, ab)]]X : X→A× X
x
→ (ap(x), fp(x) ∗ x) . (38)

In the statement of this result, we identify Coalg(QB) with B-Set by Proposition 3.10, and
Coalg(Cosem(TB)) with TBSet by Proposition 4.3.

Proof. By Proposition 3.5, the associated monad of the theory of B-valued dependently typed
update is the presheaf monad TB; so by Proposition 2.28, we have an isomorphism over Set of
categories of comodels TBSet∼= TBSet, sending the TB-comodel X to the TB-comodel structure

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 405

on X with [[λb. (fb, ab)]]= [[get(λb. updfb(ab))]]. Composing this isomorphism with the invertible
(20) yields an invertible functorB-Set→ TBSet over Set, which by inspection has the formula (38).
We conclude by the full fidelity of the Eilenberg–Moore semantics functor (Lemma 4.2). �
Proposition 7.5 For any small category B, the monad morphism

ᾱB : TB→Costr(QB) (39)

found as the adjoint transpose of the isomorphism (37), is itself an isomorphism.

Proof. By Remark 4.10 and (38), we see that ᾱ sends the element (f , a)= λb. (fb, ab) of TB(A)=∏
b (Bb ×A) to the transformation ᾱ(f , a) : UB⇒A ·UB : B-Set→ Set whose component at a

B-set (X, p, ·) is given by the function

ᾱ(f , a)(X,p,·) : X→A× X
x
→ (ap(x), fp(x) · x) . (40)

We must show every γ : UB⇒A ·UB takes this form for a unique (f , a) ∈ TB(A). For each
b ∈B, we have the representable left B-set y(b) with underlying set Bb, projection to ob(B) given
by codomain, and action given by composition in B. The component of γ at y(b) is a function
Bb→A×Bb, which, if we are to have γ = ᾱ(f , a), must by (40) have its value at 1b ∈Bb given
by (ab, fb). Thus, if we define (ab, fb) to be γy(b)(1b) for each b ∈B, then it remains only to verify
that indeed γ = ᾱ(f , a). But for any B-set (X, p, ∗) and any x ∈ X, the Yoneda lemma states that
there is a unique map of B-sets y(p(x))→ X sending 1px to x, namely x̃ given by x̃(f)
→ f ∗ x.
Now naturality of γ ensures that

γ(X,p,∗)(x)= γ(X,p,∗)(x̃(1px))= (A× x̃)(γy(px)(1px))= (ab, x̃(fpx))= (apx, fpx ∗ x)
so that γ = ᾱ(f , a) as desired. �

Given the tight relationship between (37) and (39), it is now easy to conclude that presheaf
monads and comonads are fixpoints.

Proposition 7.6 Each presheaf monad is a fixpoint to the left of the costructure–cosemantics
adjunction, while each presheaf comonad is a fixpoint to the right.

Proof. For each small category B, we have ᾱ : TB→Costr(QB) as in (37) and its adjoint trans-
pose α : QB→Cosem(TB) as in (39). By definition of adjoint transpose, this ᾱ is the unique map
fitting into a commuting triangle

where ηQB
is the unit of (21). Since both α and ᾱ are invertible, it follows that ηQB

is too, and since
every presheaf comonad is isomorphic to some QB, it follows that every presheaf comonad is a
fixpoint on the right. The dual argument shows each presheaf monad is a fixpoint on the left. �

7.3. Idempotency of the costructure–cosemantics adjunction
As an immediate consequence of the preceding result, we have:

Theorem 7.7 The costructure–cosemantics adjunction (21) is idempotent. Its fixpoints to the left
are the presheaf monads, while those to the right are the presheaf comonads.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

406 Richard Garner

Proof. Each Cosem(T) is a presheaf comonad by Proposition 5.1, and each presheaf comonad
is a fixpoint to the right by Proposition 7.6; thus, Definition 7.2(i) is satisfied and the adjunction
is idempotent. For the remaining claims, one direction is Proposition 7.6, while the other fol-
lows on noting that, by the preceding result and Proposition 7.5, the composite Cosem ◦Costr
sends each comonad to a presheaf comonad, while Costr ◦Cosem sends each monad to a presheaf
monad. �

Wemay use this result to resolve some unfinished business:

Proposition 7.8 The presheaf monad functor T(–) : Cof→Mnda(Set)op of Proposition 3.8 is full
and faithful.

Proof. Since the costructure–cosemantics adjunction is idempotent, the functor
Costr : Cmda(Set)→Mnda(Set)op is fully faithful when restricted to the subcategory
of presheaf comonads; and since Q(–) takes its image in this subcategory, we see that
Costr ◦Q(–) : Cof→Mnda(Set)op is fully faithful. Now transporting the values of this com-
posite functor along the isomorphisms ᾱB : TB ∼=Costr(QB) of Proposition 7.5 yields a fully
faithful functor Cof→Mnda(Set)op which acts on objects by B
→ TB, and on morphisms by
F
→ (ᾱB)−1 ◦Costr(QF) ◦ ᾱC. Now direct calculation shows this action on morphisms to be
precisely that of (28). �

It follows from this and Proposition 3.7 that the full embeddings Q(–) : Cof→ Cmda(Set) and
T(–) : Cof→Mnda(Set)op exhibit Cof as equivalent to the full subcategories of fixpoints to the left
and to the right; from which it follows that:

Proposition 7.9 The presheaf monad and presheaf comonad functors of Propositions 3.8 and 3.7,
together with the behaviour functors of Theorems 5.23 and 6.8, participate in adjunctions

exhibiting the full subcategories of presheaf monads, respectively, presheaf comonads, as reflective in
Mnda(Set), respectively, Cmda(Set).

We can describe the units of these reflections explicitly. On the one hand, if Q is an accessible
comonad on Set, then its reflection in the full subcategory of presheaf comonads is the presheaf
comonad of the behaviour category BQ, and the reflection map Q→QBQ has components

ηA : Q(A)→∑
x∈Q1 A[Set,Set](Qx ,id)

a
→ (Q!(a), λτ . τA(a)) .
On the other hand, if T is an accessible monad on Set, then its reflection into the full subcat-

egory of presheaf monads is the presheaf monad of the behaviour category BT, and the reflection
map η : T→ TBT has components

ηA : T(A)→∏
β∈BT (T(1)/∼β ×A)

t
→ λβ . (t̃, β(t)) .
In fact, this reflection map exhibits TBT as the result of adjoining to T a new BT-ary operation

beh satisfying the axioms of read-only state and the axioms
t(u)≡beh,β t� uβ(t)

for all t ∈ T(A) and u ∈ T(B)A. From a computational perspective, we understand the new oper-
ation beh as an “oracle” that allows the user to request complete information about the future
behaviour of the external system with which we are interacting. Of course, since this future

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 407

behaviour is rarely computable in terms of the generating operations of T, we immediately leave
the realm of computationally meaningful theories. In future work, we will see how to rectify this,
to some degree, by considering an adjunction between accessible monads on Set and suitably
accessible comonads on the category of topological spaces. In this refined setting, we will see that
the passage from monad to comonad and back adjoins new operations which observe (via the
primitives of T) only finite amounts of information about the future behaviour of the system.

8. Examples and Applications: Cosemantics
In the final two sections of this paper, we give a range of examples illustrating our main results.
In this section, we calculate the behaviour category, and the comodels classifying admissible
behaviours, for a range of examples of algebraic theories for computational effects, and cal-
culate some examples of cofunctors between behaviour categories induced by computationally
interesting interpretations of algebraic theories.

8.1. Reversible input
Given a set V , the theory of V-valued reversible input (first considered for |V| = 2 in [18]) is gen-
erated by a V-ary operation read, and a V-indexed family of unary operations unreadv, satisfying
the equations

unreadv(read(x))≡ xv and read(λu. unreadu(x))≡ x . (41)

If read is thought of as reading the next value from an input stream, then unreadv returns the
value v to the front of that stream. A comodel of this theory comprises the data of a set S, a func-
tion [[read]]= (g, n) : S→V × S and functions [[unreadv]] : S→ S, or equally a single function
p : V × S→ S; while the equations force (g,n) and p to be inverse to each other. Thus, comodels
of V-valued reversible input are equally well comodels of V-valued input whose structure map
[[read]] : S→V × S is invertible. Since, in particular, this is true for the final comodel VN of V-
valued input by the well-known Lambek lemma, we conclude that this is also the final comodel of
V-valued reversible input.

We now calculate the comodel associated with an admissible behaviour W ∈VN. We begin
with some calculations relating to∼W-equivalence. First, by Remark 5.12, any unary term is∼W-
equivalent to one of the form σ1� · · ·� σn� id where each σi is either read or some unreadv.
Now the first equation in (41) implies that unreadv� read� (–) is the identity operator, and so
any unary term is∼W-equivalent to one of the form

[n, vm, . . . , v1] :=
n︷ ︸︸ ︷

read� · · ·� read� unreadvm� · · ·� unreadv1� id

for some n ∈N and vm, . . . , v1 ∈V . Since the behaviour W satisfies W(read)=W0, we have
read� unreadW0 = read(λu. unreadW0)∼W read(λu. unreadu)= id; whence by Lemma 5.14,
also [n+ 1,Wn, vm, . . . , v1]∼W [n, vm, . . . , v1] for any n ∈N and vm, . . . , v1 ∈V . Consequently,
each unary term is∼W-equivalent to an element of the set SW given by

{[n, vm, . . . , v1] : n,m ∈N, vi ∈V andWn−1 �= vm if n,m> 0} . (42)

We claim that SW is in fact a set of∼W-equivalence class representatives. For this, it suffices by
Remark 5.19 to endow SW with a comodel structure SW satisfying (31) – which will then make it
the comodel classifying states of behaviourW. We do so by taking [[read]]SW to be given by

[n, vm, . . . , v1]
→
{
(Wn, [n+ 1]) ifm= 0;
(v1, [n, vm, . . . , v2]) ifm> 0,

(43)

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

408 Richard Garner

and taking [[unreadv]]SW to be given by

[n, v1, . . . , vm]
→
{
[n− 1] ifm= 0, n> 0, v=Wn−1;
[n, vm, . . . , v1, v] otherwise.

(44)

We may now use the above calculations to identify morphisms W→W′ in the behaviour
category. These correspond to comodel homomorphisms SW′ → SW and so to states of SW of
behaviour W′. Since the state [n, vm, . . . , v1] ∈ SW has behaviour given by the stream of values
v1 . . . vmWnWn+1Wn+2 . . . , we conclude that morphismsW→W′ in the behaviour category are
states of the form [n,W′m−1, . . . ,W′0] where W′k =Wk+n−m for all k�m but W′m−1 �=Wn−1.
Such a state is clearly uniquely determined by the integer i= n−m, and so we arrive at:

Proposition 8.1 The behaviour category of the theory of V-valued reversible input has object-set
VN; morphisms W→W′ are integers i such that, for some N ∈N, we have W′k =Wk+i for all
k>N; and composition is addition of integers. The comodel classifying states of behaviour W ∈VN

has underlying set (42), and co-operations as in (43) and (44).

Note that this behaviour category is a groupoid; in fact, it is not hard to show that it is the
free groupoid on the behaviour category for V-valued input. This groupoid is well known in the
study of Cuntz C∗-algebras: for example, for finite V it appear already in [33, Definition III.2.1].
In this context, it is important that the groupoid is not just as a groupoid of sets, but a topological
groupoid; in a sequel to this paper, we will explain how this topology arises very naturally via
comodels.

8.2. Stack
Given a set V , the theory of a V-valued stack – introduced for a finite V in [13] – is generated by a
V + {⊥}-ary operation pop, whose arguments we group into an V-ary part and a unary part; and
a V-indexed family of unary operations pushv for v ∈V , satisfying the equations

pushv(pop(x, y))≡ xv pop(λv. pushv(x), x)≡ x pop(x, pop(y, z))≡ pop(x, z) .

This theory captures the semantics of a stack of elements from V : we read pushv(x) as “push v on
the stack and continue as x”, and pop(x, y) as “if the stack is non-empty, pop its top element v and
continue as xv; else continue as y”.

Note the similarities with the theory of V-valued reversible input; indeed, this latter theory
could equally well be seen as the theory of a V-valued infinite stack. We can formalise this via an
interpretation of the theory of V-valued stack into V-valued reversible input which maps pushu
to unreadu and pop(x, y) to read(x).

A comodel of the theory of a V-valued stack comprises a set S with functions (g, n) : S→
(V + {⊥})× S (modelling pop) and p : V × S→ S (modelling the pushv’s) subject to conditions
corresponding to the three equations above:

(1) g(p(v, s))= v and n(p(v, s))= s;
(2) If g(s)=⊥ then n(s)= s, while if g(s)= v then p(v, n(s))= s;
(3) If g(s)=⊥ then g(n(s))= {⊥} and n(n(s))= n(s) (this is implied by (2)).

Writing E= {s ∈ S : g(s)=⊥} for the set of “states in which the stack is empty”, and j : E→ S
for the inclusion, (1) implies that p : V × S→ S is an injection whose image is disjoint from that

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 409

of j and (2) that every s ∈ S lies either in E or in the image of p. So we have a coproduct diagram

In fact, any such coproduct diagram comes from a comodel: for indeed, we may recover the
morphism (g, n) : S→ (V + {⊥})× S as the unique map whose composites with p and j are
λ(v, s). (v, s) and λe. (⊥, j(e)), respectively. Thus, a comodel structure on a set S is equivalently
given by a set E and a coproduct diagram V × S→ S← E.

The final comodel of this theory is the set V�ω of partial functions N⇀V which are defined
on some initial segment of N, under the comodel structure corresponding to the coproduct
diagram

Here, we write ε for the everywhere-undefined element of V�ω, and write v.W ∈V�ω for the
element with (v.W)0 = v and (v.W)i+1 �Wi2. In terms of the generating co-operations, this final
comodel is given by

[[pushv]](W)= v.W [[pop]](v.W)= (v,W) and [[pop]](ε)= (⊥, ε) .
We now calculate the comodel associated with an admissible behaviour W ∈V�ω. Given the

similarity with the theory of V-valued reversible input, we may argue as in the previous section to
see that any unary term is∼W-equivalent to one

[n, vm, . . . , v1] := pop� · · ·� pop︸ ︷︷ ︸
n

� pushvm� · · ·� pushv1� id

for some n ∈N and vm, . . . , v1 ∈V . Now, if W0 is undefined, then W(pop)=⊥, and so pop�
m= pop(λv.m,m)∼W pop(λv. pushv(m),m)=m for any m ∈ T(1). By Lemma 5.14, it follows
that [n+ 1, vm, . . . , v1]∼W [n, vm, . . . , v1] whenever Wn is undefined, and so we conclude that
each unary term is ∼W-equivalent to some [n, vm, . . . , v1] for whichW is defined at all k< n. At
this point, by repeating the arguments of the preceding section, mutatis mutandis, we may show
that any unary term is∼W-equivalent to an element of the set

{[n, vm, . . . , v1] : n,m ∈N, vi ∈V ,W defined at all k< n, andWn−1 �= vm if n,m> 0} . (45)

We now show, like before, that this is a set of∼W-equivalence class representatives, by making
it into a comodel satisfying (31); again, this comodel will then classify states of behaviourW. This
time, we take [[pop]] to be given by

[n, vm, . . . , v1]
→

⎧⎪⎨⎪⎩
(Wn, [n+ 1]) ifm= 0 andWn defined;
(⊥, [n]) ifm= 0 andWn undefined;
(v1, [n, vm, . . . , v2]) ifm> 0,

(46)

and take [[pushv]] to be given exactly as in (44). Transcribing the calculations of the preceding
section, we arrive at:

Proposition 8.2 The behaviour category of the theory of a V-valued stack has object-set V�ω;
morphisms W→W′ are integers i such that, for some N ∈N, we have W′k �Wk+i for all k>N,

2We use Kleene equality a� b, meaning that a is defined just when b is defined, and they are then equal.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

410 Richard Garner

and composition is addition of integers. The comodel classifying states of behaviour W ∈V�ω has
underlying set (45), and co-operations as in (46) and (44).

In fact, it is easy to see that the behaviour category of a V-valued stack is the disjoint union of
the behaviour category for V∗-valued state (modelling a finite stack) and for V-valued reversible
input (modelling an infinite stack). The cofunctor on behaviour categories induced by the inter-
pretation of the theory of a V-valued stack into that of V-valued reversible input is simply the
connected component inclusion.

8.3. Dyck words
A Dyck word is a finite listW ∈ {U, D}∗ with the same number of U’s as D′s, and with the property
that the ith U in the list always precedes the ith D. Here, U and D stand for “up” and “down”, and
the idea is that a Dyck word records a walk on the natural numbers N with steps ±1 which starts
and ends at 0. More generally, we can encode walks from n ∈N tom ∈N by “affine Dyck words”:

Definition 8.3 (Affine Dyck words). Given n,m ∈N, an affine Dyck word from n to m is a word
W ∈ {U, D}∗ such that #{D′s inW} − #{U′s inW} = n−m, and such that the ith U precedes the (i+
n)th D for all suitable i. We may extend this notation by declaring any word W ∈ {U, D}∗ to be an
affine Dyck word from∞ to∞. If n,m ∈N∪ {∞}, then we write W : n�m to indicate that W is
an affine Dyck word from n to m.

For example:

• UUDUDD is a Dyck word, but also an affine Dyck word n� n for any n;
• UDDUUU is an affine Dyck word 1� 3 and 2� 4, but not 0� 2.

We now describe an algebraic theory which encodes the dynamics of the walks encoded
by affine Dyck words. It has two unary operations U and D; and an N-indexed family of
binary operations ht>n each satisfying the axioms of read-only state; all subject to the following
axioms:

ht>n(x, ht>m(y, z))≡ ht>m(ht>n(x, y), z)
ht>0(x, D(x))≡ x U(ht>0(x, y))≡ U(x)

U(ht>n+1(x, y))≡ ht>n(U(x),U(y)) D(ht>n(x, y))≡ ht>n+1(D(x), D(y))

for all m� n ∈N. The theory of affine Dyck words provides an interface for accessing a state
machine with an internal “height” variable h ∈N, which responds to two commands U and D
which, respectively, increase and decrease h by one, with the proviso that D should do nothing
when applied in a state with h= 0. With this understanding, we read the primitive ht>n(x, y) as
“if h> n then continue as x, else continue as y”; read U(x) as “perform U and continue as x”; and
read D(x) as “perform D (so long as h> 0) and continue as x”.

Rather than compute the comodels by hand, we pass directly to a calculation of the behaviour
category. We begin by finding the admissible behaviours. By Remark 5.6 and the fact that
ht>n� (–) is the identity operator, an admissible behaviour β is uniquely determined by the val-
ues β(σ1� · · ·� σk� ht>n) where each σi is either U or D. Now, the last three axioms imply
that these values are determined in turn by the values β(ht>n) ∈ {tt, ff} for each n. Finally, by the
first axiom, β(ht>m)= ff implies β(ht>n)= ff wheneverm� n. So the possibilities are either that
there is a least n with β(ht>n)= ff, or that β(ht>n)= tt for all n ∈N.

In fact, each of these possibilities for β does yields an admissible behaviour. Indeed, identifying
these possibilities with elements of the setN∪ {∞}, we can try to make this set into a comodel via

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 411

the formulae of Proposition 5.9, by taking:

[[ht>n]](k)=
{
(tt, k) if k> n;
(ff, k) otherwise,

[[U]](k)= k+ 1 , [[D]](k)=
{
0 if k= 0;
n− 1 otherwise,

where we take∞> n for any n ∈N, and∞+ 1=∞=∞− 1. It is not hard to check that these
co-operations do in fact yield a comodel, which is then of necessity the final comodel of the theory
of affine Dyck words.

We now compute the comodel k associated with a behaviour k ∈N∪ {∞}. Because each oper-
ator ht>n� (–) is the identity, each unary operation is ∼k-equivalent to one in the submonoid
generated by U, D ∈ T(1). Further, by the second axiom we have D∼0 id, and so by Lemma 5.14,
also WDW′ ∼k WW′ for any k ∈N, any W′ ∈ {U, D}∗ and any affine Dyck word W : k� 0 from
k to 0. Applying this rewrite rule repeatedly, we find that any unary term is ∼k equivalent to an
element of the set

{W ∈ {U, D}∗ :W : k� � for some � ∈N∪ {∞} } , (47)

and we may apply Remark 5.19 to see that there are in fact no further relations. Indeed, we may
make (47) into a classifying comodel k satisfying (31) by taking

[[ht>n]](W)=
{
(tt,W) ifW : k� � with � > n;
(ff,W) otherwise,

[[U]](W)=WU , [[D]](W)=
{
W ifW : k� 0;
WD otherwise.

(48)

From the preceding calculations, we can now read off:

Proposition 8.4 The behaviour category of the theory of affine Dyck words has object-set N∪ {∞},
and morphisms from n to m given by affine Dyck words W : n�m. Composition is given by con-
catenation of words. The comodel classifying the behaviour k ∈N∪ {∞} has underlying set (47),
and co-operations as in (48).

The set of Dyck words of length 2n is well known to have the cardinality of the nth Catalan
numberCn = 1

n+1
2n
n . On the other hand,Cn also enumerates the set of well-bracketed expressions,

such as ((aa)a)(aa), composed of n+ 1 a’s. In fact, there is a bijection between Dyck words of
length 2n and well-bracketed expressions of (n+ 1) a’s which can be obtained by interpreting a
Dyck wordW as a set of instructions for a stack machine, as follows:

(1) Begin with a stack containing the single element a;
(2) Read the next element of the Dyck wordW:

• If it is U, push an a onto the stack;
• If it is D, pop the top two elements x,y of the stack and push (xy) onto the stack.

(3) WhenW is consumed, return the single element remaining on the stack.

While the terms on which this stack machine operates are the well-bracketed expressions of a’s,
we can do something similar for stacks of elements of any set V endowed with a constant a and a
binary operation ∗, obtaining for each Dyck word W an element of V built from a’s and ∗’s. We

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

412 Richard Garner

can understand this in terms of an interpretation f : TDyck→TStack of the theory of affine Dyck
words into the theory of a V-valued stack, given as follows:

(ht>0) f (x, y)= pop(λv. pushv(x), y)
(ht>n+1) f (x, y)= pop(λv. (ht>n) f (pushv(x), pushv(y)), y)

U f (x)= pusha(x) D f (x)= pop(λv. pop(λw. pushv∗w(x), x), y)
Here, for the (recursively defined) interpretation of the predicates ht>n, we attempt to pop

n+ 1 elements from the top of our stack of V ’s; if this succeeds, then we undo our pushes and
return tt, while if it at any point fails, then we undo our pushes and return ff. For the interpretation
of U we simply push our constant a ∈V onto the stack; while for the interpretation of D(x), we
attempt to pop the top two elements v,w from the stack and push v ∗w back on. If this succeeds,
we continue as x, but some care is needed if it fails. By the fifth affine Dyck word equation, if our
stack contains exactly one element, then D f should yield a stack with no elements and continue as
x; while by the second equation, if our stack is empty, then D f should do nothing and continue as
x. The forces the definition given above.

The dynamics of the interpretation of (affine) Dyck words as stack operations is captured by the
induced cofunctor Bf : BStack→BDyck. It is an easy calculation to see that this is given as follows:

• On objects, we map S ∈V�ω to the cardinality |S| ∈N∪ {∞} of the initial segment of N on
which S is defined.

• On morphisms, given S ∈V�ω and an affine Dyck word W : |S|� k, we return the mor-
phism S→ S′ which updates the stack S via the sequence of U’s and D’s which specifies
W.

In particular, we may consider the case where (V , ∗, a) is the set of well-bracketed expressions
of a’s under concatenation. Now give a Dyck word W, we may regard it as an affine Dyck word
W : 1� 1; and now updating the singleton stack a via W : 1= |a|� 1 yields precisely the well-
bracketed expression of a’s which corresponds to the given Dyck wordW.

8.4. Store
Given a set L of locations and a family �V = (V� : � ∈ L) of value sets, the theory of �V-valued store
comprises a copy of the theory of V�-valued state for each � ∈ L – with operations (put(�)v : v ∈V�)
and get(�), say – together with, for all � �= k ∈ L, all v ∈V� and allw ∈Vk, the commutativity axiom:

put(�)v (put(k)w (x))≡ put(k)w (put(�)v (x)) . (49)

By the argument of [15, Lemma 3.21 and 3.22], these equations also imply the commuta-
tivity conditions put(�)v (get(k)(λw. xw))≡ get(k)(λw. put(�)v (xw)) and get(�)(λv. get(k)(λw. xvw))≡
get(k)(λw. get(�)(λv. xvw)).

A set-based comodel of this theory is a set S endowed with an L-indexed family of lens
structures (g(�) : S→V�, p(�) : V� × S→ S) which commute in the sense that

p(k)(v, p(�)(u, s))= p(�)(u, p(k)(v, s))

for all �, k ∈ L, u ∈V� and v ∈Vk. When L is finite and each V� is the same set V , this is the notion
of array given in [32, Section 4]. The final comodel of this theory is the set

∏
�∈L V�, under the

operations

[[get(�)]](�v)= (v�, �v) [[put(�)v]](�v)= �v[v/v�] .

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 413

By similar arguments to those of the preceding sections, we may now show that:

Proposition 8.5 The behaviour category B �V of �V-valued store has set of objects
∏
�∈L V�, while a

morphism �v→ �w is unique when it exists and exists just when �v and �w differ in only finitely many
positions. The comodel classifying the behaviour �v ∈∏

�∈L V� is the sub-comodel of the final comodel
on the set

{�w ∈∏
�∈L V� : �v and �w differ in only finitely many positions} .

For each � ∈ L, there is an obvious interpretation of the theory ofV�-valued state into the theory
of �V-valued store, and this induces a cofunctor on behaviour categories B �V→∇V� (recalling
from Example 5.20 that ∇V� is the codiscrete category on V�) which:

• On objects, maps �v ∈B �V to its component v� ∈∇V�;
• On morphisms, for each �v ∈B �V , sends v�→ v′� in ∇V� to the unique map �v→�v[v′�/v�] in
B �V .

This captures exactly the “view update” paradigm in database theory: on the one hand, project-
ing from the state �v to its component v� provides a view on the data encoded by �v; while lifting the
morphism v�→ v′� to one �v→�v[v′�/v�] encodes updating the state in light of the given update
of the view. The pleasant feature here is that all of this is completely automatic once we specify the
way in which V�-valued state is to be interpreted into �V-valued store.

8.5. Tape
Our final example is a variant on a particular case of the previous one; it was introduced qua
monad in [14], with the presentation given here due to [15] and, independently, [27]. Given
a set V , we consider the constant Z-indexed family of sets V(Z) = (V : � ∈Z). The theory of a
V-valued tape is obtained by augmenting the theory of V(Z)-valued store with two new unary
operations right and right−1 satisfying the axioms right−1(right(x)), right(right−1(x))≡ x, and
right(put(�)u (x))≡ put(�+1)u (right(x)) for all � ∈Z. By arguing much as before, we see that this last
axiom implies also that right(get(�)(x))≡ get(�+1)(λv. right(xv)).

This theory encapsulates interaction with a doubly-infinite tape, each of whose locations � ∈Z
contains a value in V which can be read or updated via get and put, and whose head position
may be moved right or left via right and right−1. A comodel structure on a set S comprises a
Z-indexed family of commuting lens structures (g(�) : S→V , p(�) : V × S→ S) together with a
bijection r : S→ S such that r(p(�+1)(u, �v))= p(�)(u, r(�v)) for each � ∈Z. It is easy to see that the
final comodel of this theory is the final comodel VZ of �V-valued store, augmented with the co-
operations [[right]](�v)k = vk+1 and [[right−1]](�v)k = vk−1. By similar calculations to before, we now
find that

Proposition 8.6 The behaviour category of the theory of V-valued tape has object-set VZ, while a
map �v→ �w is an integer i such that �v(–)+i and �w differ in only finitely many places. The comodel
classifying the behaviour �v ∈VZ has underlying set

{(i ∈Z, �w ∈VZ) : �v and �w differ in only finitely many positions}

with operations [[right±1]](i, �w)= (i± 1, �w), [[get(�)]](i, �w)= (wi+�, (i, �w)), and [[put(�)v]](i, �w)=
(i, �w[v/wi+�]).

If the set V comes endowed with a bijective pairing function 〈–, –〉 : V ×V→V , say with
inverse (p, q) : V→V ×V , then there is an interpretation f of the theory of V-valued reversible

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

414 Richard Garner

input into the theory of V-valued tape, given by

read f (λv. xv) := get(0)(λw. put(0)p(w)(right(xq(w))))

(unreadu) f (x) := left(get(0)(λw. put(0)〈w,u〉(x))) .
This induces a cofunctor on behaviour categories that acts as follows.

• On objects, for each �v ∈VZ in the behaviour category for a V-valued tape, we produce the
object f ∗(�v) ∈VN given by f ∗(�v)n = q(vn);

• On morphisms, if we are given �v ∈VZ and a map i : f ∗(�v)→W in the behaviour category
for V-valued reversible input then our cofunctor lifts this to the morphism i : �v→ �w in the
behaviour category of V-valued tape where

wk =

⎧⎪⎨⎪⎩
vk+i if k<−i;
p(vk+i) if−i� k< 0;
〈p(vk+i),Wk〉 if 0� k.

Note that, since i : f ∗(�v)→W in the behaviour category for V-valued reversible input (cf.
Proposition 8.1), we know that for some N ∈N, we haveWk = f ∗(�v)k+i = q(vk+i) for all k>
N. It follows that wk = 〈p(vk+i), q(vk+i)〉 = vk+i for all k>N, so that �v(–)+i and �w do indeed
only differ in finitely many places, as required for i to be a well defined map �v→ �w in the
behaviour category of V-valued tape.

9. Examples and Applications: Costructure
In this final section, we illustrate our understanding of the costructure functor by providing some
sample calculations of the behaviour categories associated with comonads on Set.

9.1. Coalgebras for polynomial endofunctors
For any endofunctor F : Set→ Set, we can consider the category F-coalg of F-coalgebras, i.e., sets
X endowed with a map ξ : X→ FX. As is well known, for suitable choices of F, such coalgebras
can model diverse kinds of automaton and transition system; see [34] for an overview.

If F is accessible, then the forgetful functor F-coalg→ Set will have a right adjoint and be
strictly comonadic, meaning that we can identify F-coalg with the category of Eilenberg–Moore
coalgebras of the induced comonad QF on Set; in light of this, we call QF the cofree comonad on
the endofunctor F. Explicitly, the values of the cofree comonad can be described via the greatest
fixpoint formula

QF(V)= νX.V × F(X) . (50)

The objective of this section is to calculate the behaviour categories of cofree comonads QF
for some natural choices of F. To begin with, let us assume that F is polynomial in the sense of
Section 3.1, meaning that it is can be written as a coproduct of representables

F(X)=∑
σ∈� X|σ | (51)

for some set� and family of sets (|σ | : σ ∈�). In this case, as is well known, the fixpoint (50) can
be described as a set of trees.

Definition 9.1 (F-trees). Let F be a polynomial endofunctor (51).

• An F-path of length k is a sequence P= σ0e1σ1 · · · ekσk where each σi ∈� and each ei ∈ |σi−1|.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 415

• An F-tree is a subset T of the set of F-paths such that:

(i) T contains a unique path of length 0, written ∗ ∈ T;
(ii) If T contains σ0e1 · · · ekσkek+1σk+1, then it contains σ0e1 · · · ekσk;
(iii) If T contains σ0e1 · · · ekσk, then for each ek+1 ∈ |σk|, it contains a unique path of the form

σ0e1 · · · ekσkek+1σk+1.
• If V is a set, then a V-labelling for an F-tree T is a function � : T→V.
• If T is an F-tree and P= σ0e1 · · · ekσk ∈ T, then TP is the F-tree

TP = {σkek+1 · · · emσm : σ0e1 · · · emσm ∈ T} .
If � : T→V is a labelling for T, then �P : TP→V is the labelling with �P(σkek+1 · · · emσm)=
�(σ0e1 · · · emσm).

Lemma 9.2 The cofree comonad QF on a polynomial F as in (51) is given as follows:

• QF(V) is the set of V-labelled F-trees;
• The counit εV : QF(V)→V sends (T, �) to �(∗) ∈V;
• The comultiplication δV : QF(V)→QFQF(V) sends (T, �) to (T, ��), where �� : T→QF(V)
sends P to (TP, �P). �

We may use this result to calculate the behaviour category BF of the comonad QF . Clearly,
objects ofBF are elements ofQF(1), i.e., (unlabelled) F-trees. Morphisms ofBF with domain T are,
by definition, natural transformations (QF)T⇒ id; but the functor (QF)T is visibly isomorphic to
the representable functor (–)T , so that by the Yoneda lemma, morphisms in BF with domain T
correspond bijectively with elements P ∈ T. Given this, we may easily read off the remainder of
the structure in Definition 6.3 to obtain:

Proposition 9.3 Let F be a polynomial endofunctor of Set. The behaviour category BF of the cofree
comonad QF has:

• Objects given by F-trees T;
• Morphisms P : T→ T′ are elements P ∈ T such that TP = T′;
• Identities are given by 1T =∗: T→ T;
• Composition is given by (σkek+1 · · · emσm) ◦ (σ0e1 · · · ekσk)= σ0e1 · · · emσm.
It is not hard to see that BF is, in fact, the free category on a graph: the generating morphisms

are those of the form σ0e1σ1.

Remark 9.4 When F is polynomial, the cofree comonad QF is again polynomial: indeed, we have
QF(V)∼=∑

T∈F-tree VT. Thus, QF is a presheaf comonad, and it will follow from Proposition 7.9
below that it is in fact the presheaf comonad of the behaviour category BF. Thus, we arrive at the
(not entirely obvious) conclusion that, for F polynomial, the category of F-coalgebras is equivalent to
the presheaf category [BF , Set].

Example 9.5 Let E be an alphabet. A deterministic automaton over E is a set S of states together
with a function (t, h) : S→ SE × {�,⊥}. For a state s ∈ S, the value h(s) indicates whether or not h
is an accepting state, while t(s)(e) ∈ S gives the state reached from s by transition along e ∈ E.

Deterministic automata are F-coalgebras for the polynomial functor F(X)=∑
a∈{⊥,�} XE. It is

easy to see that, in this case, the set of F-trees can be identified with the power set P(E∗) via the
assignment

T
→ {e1 · · · en ∈ E∗ : σ0e1 . . . σn−1en�∈ T} .

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

416 Richard Garner

In these terms, the behaviour category BF can be identified with the free category on the graph
whose vertices are subsets of E∗, and whose edges are e : L→ ∂eL for each L⊆ E∗ e ∈ E, where
∂eL= {e1 · · · en ∈ E∗ : ee1 · · · en ∈ L}. Note that this is precisely the transition graph of the final
deterministic automaton over E.

9.2. Coalgebras for non-polynomial endofunctors
When we consider cofree comonads over non-polynomial endofunctors F, things become more
delicate. To illustrate this, let us consider the case of the finite multiset endofunctor

M(X)=∑
n∈N Xn/Sn .

An F-coalgebra is a non-deterministic weighted transition system with transition weights in
the additive monoid of natural numbers. As in the preceding section, we have a description of the
associated cofree comonad in terms of trees:

Definition 9.6 (Symmetric trees) A symmetric tree T is a diagram of finite sets and functions

· · · ∂−→ Tn
∂−→ · · · ∂−→ T1

∂−→ T0

where T0 = {∗}. We may write |T| for the set
∑

k Tk. A V-labelling for a symmetric tree T is a
function � : |T|→V. Given a V-labelled tree (T, �) and t ∈ Tk, we write (Tt , �t) for the labelled tree
with (Tt)n = {u ∈ Tn+k : ∂k(u)= t}, and with ∂ ’s and labelling inherited from T. An isomorphism
θ : (T, �)→ (T′, �′) of V-labelled trees is a family of invertible functions θn : Tn→ T′n commuting
with the ∂ ’s and the functions to V. �
Lemma 9.7 The cofree comonad on the finite multiset endofunctor M has:

• QM(V) given by the set of isomorphism-classes of V-labelled symmetric trees;
• The counit εV : QM(V)→V given by (T, �)
→ �(∗);
• The comultiplication δV : QM(V)→QMQM(V) given by (T, �)
→ (T, ��), where �� : |T|→
QM(V) sends t ∈ Tk to (Tt , �t).

Note that an alternative description of this cofree comonad may be extracted from
[2, Theorem 6.11]; this describes the final M-coalgebra QM(1), but the description may be easily
adapted to one for an arbitrary QM(V).

Given a symmetric tree T, we call t ∈ Tk rigid if any automorphism of T fixes t.

Proposition 9.8 The behaviour category of the cofree comonad QM has:

• Objects given by isomorphism-class representatives of symmetric trees T;
• Morphisms t : T→ T′ are rigid elements t ∈ T such that Tt ∼= T′;
• The identity on T is ∗: T→ T;
• The composite of t : T→ T′ and u : T′ → T′′ is θ(u) : T→ T′′, where θ is any tree isomor-
phism T′ → Tt.

Proof. Let us write Q=QM . Clearly the object-set Q(1) of the behaviour category can be iden-
tified with a set of isomorphism-class representatives of symmetric trees. Now, for any such
representative T, the subfunctor QT ⊆Q sends a set V to the set of all isomorphism-classes of
V-labellings of T, which is easily seen to be the quotient V |T|/Aut(T) of V |T| by the evident action
of the group of tree automorphisms of T. Thus, by the Yoneda lemma, the set of natural transfor-
mations QT⇒ id can be identified with the set of elements t ∈ |T| which are fixed by the Aut(T)
action, i.e., the rigid elements of T. For a given rigid element t ∈ |T|, the corresponding QT⇒ id

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 417

sends a V-labelling � : |T|→V in QT(V) to �(t) ∈V ; and it follows that the unique factorisation
in (32) is of the form QT⇒QT′ where T′ ∼= Tt . Tracing through the remaining aspects of the
definition of behaviour category yields the result. �

For a similar example in this vein, we may calculate the behaviour category of the cofree
comonad generated by the finite powerset functor Pf . In this case, things are even more
degenerate: the behaviour category turns out to be the discrete category on the final Pf -coalgebra.

9.3. Local homeomorphisms
For our final example, we compute the behaviour category of the comonad classifying local
homeomorphisms over a topological space.

Definition 9.9 (Reduced power) If A, X are sets and F is a filter of subsets of X, then two maps
ϕ,ψ : X→A are F-equivalent when {x ∈ X : ϕ(x)=ψ(x)} ∈F. The reduced power AF is the
quotient of AX by F-equivalence.

Definition 9.10 (Sheaf comonad) Let X be a topological space. The sheaf comonad QX is the
accessible comonad on Set induced by the adjunction

(52)

whereLh/X is the category of local homeomorphisms over X, where U is the evident forgetful functor,
and where C sends p : A→ X to the space of germs of partial sections of p. If we write Nx for the
filter of open neighbourhoods of x ∈ X, then then this comonad has QX(A)=∑

x∈X ANx , and counit
and comultiplication

εA : ∑
x ANx→A δA : ∑

x ANx→∑
x
(∑

x′ A
N

x′)Nx

(x, ϕ)
→ ϕ(x) (x, ϕ)
→ (
x, λy. (y, ϕ)

)
.

(53)

The adjunction in (52) is in fact strictly comonadic, so that we can identify the category of
QX-coalgebras with the category of local homeomorphisms (= sheaves) over X.

Proposition 9.11 Let X be a topological space. The behaviour category of the sheaf comonad QX is
the poset (X,�) of points of X under the specialisation order: thus x� y just when every open set
containing x also contains y.

Proof. Writing Q for QX , we clearly have Q(1)= X, so that objects of the behaviour category
are points of X. To characterise the morphisms with domain x ∈ X, we observe that the subfunc-
tor Qx ⊆Q is the reduced power functor (–)Nx , which can also be written as the directed colimit
of representable functors colimU∈Nx(–)U . Thus, by the Yoneda lemma, the set of natural trans-
formations Qx⇒ id can be identified with the filtered intersection

⋂
U∈Nx U, i.e., with the upset

{y ∈ X : x� y} of x for the specialisation order. Given y� x, the corresponding natural transfor-
mationQx⇒ id has components ϕ
→ ϕ(y); whence the unique factorisation in (32) is of the form
Qx⇒Qy. By definition of behaviour category, we conclude that BQ is the specialisation poset
of X. �

What we learn from this is that a local homeomorphism p : S→ X can be seen as a coalgebraic
structure with set of “states” S, with the “behaviour” associated with a state s given by p(s), and with
the possibility of transitioning uniformly from a state s of behaviour x to a state s′ of behaviour y
whenever x� y. This is intuitively easy to see: given s ∈ S of behaviour x, we pick an open neigh-
borhood U ⊆ Smapping homeomorphically onto an open V = p(U)⊆ X. Since x= p(s) ∈V and
x� y, also y ∈V and so we may define s′ of behaviour y to be (p

∣∣
U)−1(y) ∈U.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

418 Richard Garner

References
[1] Abbott, M., Altenkirch, T. and Ghani, N. (2005) Containers: Constructing strictly positive types. Theoretical Computer

Science 342 3–27.
[2] Adámek, J., Levy, P. B., Milius, S., Moss, L. S. and Sousa, L. (2015) On final coalgebras of power-set functors and

saturated trees. Applied Categorical Structures 23 (4) 609–641.
[3] Aguiar, M. (1997) Internal Categories and Quantum Groups. PhD thesis, Cornell University.
[4] Ahman, D. and Bauer, A. (2020) Runners in action. In: Programming Languages and Systems, vol. 12075, Lecture Notes

in Computer Science, Springer, 29–55.
[5] Ahman, D., Chapman, J. and Uustalu, T. (2012) When is a container a comonad? In: Foundations of Software Science

and Computational Structures, vol. 7213, Lecture Notes in Computer Science, Heidelberg: Springer, 74–88.
[6] Ahman, D. andUustalu, T. (2014) Coalgebraic update lenses. In : Proceedings of the 30th Conference on theMathematical

Foundations of Programming Semantics (MFPS XXX), vol. 308, Electronic Notes in Theoretical Computer Science,
Amsterdam: Elsevier Sci. B. V., 25–48.

[7] Ahman, D. and Uustalu, T. (2014) Update monads: Cointerpreting directed containers. In: 19th International
Conference on Types for Proofs and Programs, vol. 26 LIPIcs, Leibniz International Proceedings in Informatics,
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 1–23.

[8] Ahman, D. and Uustalu, T. (2017) Taking updates seriously. In: Proceedings of the 6th International Workshop on
Bidirectional Transformations (2017), CEURWorkshop Proceedings, 59–73.

[9] Barr, M. andWells, C. (1985) Toposes, Triples and Theories, vol. 278, Grundlehren derMathematischenWissenschaften.
Springer.

[10] Diers, Y. (1978) Spectres et localisations relatifs à un foncteur. Comptes rendus hebdomadaires des séances de l’Académie
des sciences 287 985–988.

[11] Dubuc, E. J. (1970) Kan Extensions in Enriched Category Theory, vol. 145, Lecture Notes in Mathematics. Springer.
[12] Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C. and Schmitt, A. (2007) Combinators for bidirectional tree

transformations: A linguistic approach to the view-update problem. ACM Transactions on Programming Languages
and Systems 29 17–es.

[13] Goncharov, S. (2013) Trace semantics via generic observations. In: Algebra and Coalgebra in Computer Science, vol.
8089, Lecture Notes in Computer Science, Heidelberg: Springer, 158–174.

[14] Goncharov, S., Milius, S. and Silva, A. (2014) Towards a coalgebraic chomsky hierarchy. In: TCS 2014, Rome (2014),
vol. 8705, Lecture Notes in Computer Science, Springer, 265–280.

[15] Goncharov, S., Milius, S. and Silva, A. (2020) Toward a uniform theory of effectful state machines. ACM Transactions
on Computational Logic 21.

[16] Higgins, P. J. and Mackenzie, K. C. H. (1993) Duality for base-changing morphisms of vector bundles, modules, Lie
algebroids and Poisson structures.Mathematical Proceedings of the Cambridge Philosophical Society 114 471–488.

[17] Johnstone, P. T. (1990) Collapsed toposes and Cartesian closed varieties. Journal of Algebra 129 446–480.
[18] Jónsson, B. and Tarski, A. (1961) On two properties of free algebras.Mathematica Scandinavica 9 95–101.
[19] Katsumata, S., Rivas, E. and Uustalu, T. (2019) Interaction laws of monads and comonads. Preprint, available as

arXiv:1912.13477.
[20] Kelly, G. M. and Power, A. J. (1993) Adjunctions whose counits are coequalizers, and presentations of finitary enriched

monads. Journal of Pure and Applied Algebra 89 163–179.
[21] Kupke, C. and Leal, R. A. (2009) Characterising behavioural equivalence: Three sides of one coin. In: Algebra and

Coalgebra in Computer Science, vol. 5728, Lecture Notes in Computer Science. Springer, 97–112.
[22] Lawvere, F. W. (1963) Functorial Semantics of Algebraic Theories. PhD thesis, Columbia University.
[23] Manes, E. (1976) Algebraic Theories, vol. 26. Graduate Texts in Mathematics. Springer.
[24] Møgelberg, R. E. and Staton, S. (2014) Linear usage of state. Logical Methods in Computer Science 10 1:17, 52.
[25] Moggi, E. (1991) Notions of computation and monads. Information and Computation 93 55–92.
[26] Pattinson, D. and Schröder, L. (2015) Sound and complete equational reasoning over comodels. In: The 31st Conference

on the Mathematical Foundations of Programming Semantics (MFPS XXXI), vol. 319, Electronic Notes in Theoretical
Computer Science. Elsevier, 315–331.

[27] Pattinson, D. and Schröder, L. (2016) Program equivalence is coinductive. In: Proceedings of the 31st Annual ACM-IEEE
Symposium on Logic in Computer Science (LICS 2016) (2016), ACM, 10.

[28] Plotkin, G. and Power, J. (2001) Adequacy for algebraic effects. In: Foundations of Software Science and Computation
Structures (Genova, 2001), vol. 2030, Lecture Notes in Computer Science, Berlin: Springer, 1–24.

[29] Plotkin, G. and Power, J. (2002) Notions of computation determine monads. In: Foundations of Software Science and
Computation Structures (Grenoble, 2002), vol. 2303, Lecture Notes in Computer Science. Springer, Berlin, 2002,
pp. 342–356.

[30] Plotkin, G. and Power, J. (2003) Algebraic operations and generic effects. Applied Categorical Structures 11 69–94.
[31] Plotkin, G. and Power, J. (2008) Tensors of comodels and models for operational semantics. Electronic Notes in

Theoretical Computer Science 218 295–311.
[32] Power, J. and Shkaravska, O. (2004) From comodels to coalgebras: State and arrays. In: Proceedings of the Workshop

on Coalgebraic Methods in Computer Science (2004), vol. 106. Electronic Notes in Theoretical Computer Science,
Elsevier, 297–314.

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219

Mathematical Structures in Computer Science 419

[33] Renault, J. (1980) A Groupoid Approach to C∗-Algebras. vol. 793. Lecture Notes in Mathematics, Berlin: Springer.
[34] Rutten, J. J. M. M. (2000) Universal coalgebra: A theory of systems. Theoretical Computer Science 249 3–80.
[35] Rutten, J. J. M. M. and Turi, D. (1993) On the foundations of final semantics: nonstandard sets, metric spaces, partial

orders. In: Semantics: Foundations and Applications (Beekbergen, 1992), vol. 666, Lecture Notes in Computer Science,
Berlin: Springer, 477–530.

[36] Thielecke, H. (1997) Categorical Structure of Continuation Passing Style. PhD thesis, University of Edinburgh.
[37] Uustalu, T. (2015) Stateful runners of effectful computations. In: The 31st Conference on the Mathematical Foundations

of Programming Semantics (MFPS XXXI), vol. 319, Electronic Notes in Theoretical Computer Science, Amsterdam:
Elsevier Sci. B. V., 403–421.

Cite this article: Garner R (2022). The costructure–cosemantics adjunction for comodels for computational effects.
Mathematical Structures in Computer Science 32, 374–419. https://doi.org/10.1017/S0960129521000219

https://doi.org/10.1017/S0960129521000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000219
https://doi.org/10.1017/S0960129521000219

	
	Introduction
	Algebraic Theories and Their (Co)models
	Algebraic theories
	Models and comodels
	The associated monad
	Presheaf Monads and Comonads
	Presheaf monads and comonads
	Morphisms of presheaf monads and comonads
	Semantics
	The Costructure"2013`Cosemantics Adjunction
	The cosemantics comonad of an accessible monad
	The costructure monad of an accessible comonad
	Relation to duals and Sweedler duals
	Calculating the Cosemantics Functor
	Cosemantics is valued in presheaf comonads
	Behaviours and the final comodel
	The behaviour category of an accessible monad
	Functoriality
	Calculating the Costructure Functor
	The behaviour category of an accessible comonad
	Functoriality
	Idempotency of Costructure"2013`Cosemantics
	Idempotent adjunctions
	Presheaf monads and presheaf comonads are fixpoints
	Idempotency of the costructure"2013`cosemantics adjunction
	Examples and Applications: Cosemantics
	Reversible input
	Stack
	Dyck words
	Store
	Tape
	Examples and Applications: Costructure
	Coalgebras for polynomial endofunctors
	Coalgebras for non-polynomial endofunctors
	Local homeomorphisms

