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In 1966 [7], John Isbell introduced a construction on categories 
which he termed the “couple category” but which has since 
come to be known as the Isbell envelope. The Isbell envelope, 
which combines the ideas of contravariant and covariant 
presheaves, has found applications in category theory, logic, 
and differential geometry. We clarify its meaning by exhibiting 
the assignation sending a locally small category to its Isbell 
envelope as the action on objects of a pseudomonad on the 
2-category of locally small categories; this is the Isbell monad
of the title. We characterise the pseudoalgebras of the Isbell 
monad as categories equipped with a cylinder factorisation 
system; this notion, which appears to be new, is an extension 
of Freyd and Kelly’s notion of factorisation system [5] from 
orthogonal classes of arrows to orthogonal classes of cocones 
and cones.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

One of the most fundamental constructions in category theory is that which assigns 
to a small category C the Yoneda embedding Y : C → [Cop, Set] into its category of 
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presheaves. As is well known, this embedding has the effect of exhibiting [Cop, Set] as a 
free cocompletion of C: the value at C of a left biadjoint

COCTS ⊥ CAT (1.1)

to the forgetful 2-functor from small-cocomplete categories and cocontinuous functors to 
locally small ones. At a C which is not necessarily small, this left biadjoint still exists, 
but now has its unit Y : C → PC given by the Yoneda embedding into the subcategory 
PC ⊂ [Cop, Set] of small presheaves: those which can be expressed as small colimits of 
representables. Composing the two biadjoints in (1.1) exhibits the process of free co-
completion as the functor part of a pseudomonad P on CAT, and it turns out that the 
P-pseudoalgebras and algebra pseudomorphisms are once again the small-cocomplete 
categories and cocontinuous functors between them; which is to say that the biadjunc-
tion (1.1) is pseudomonadic [12].

Dually, we speak of free completions of categories, meaning the values of a left bi-
adjoint to the forgetful 2-functor CTS → CAT from complete categories to locally 
small ones. The free completion of a small C is witnessed by the dual Yoneda embed-
ding Y : C → [C, Set]op, while the general completion Y : C → P†C is constructed as 
P†C = P(Cop)op ⊂ [C, Set]op. As before, the biadjunction CTS � CAT induced by 
free completion is pseudomonadic, so that, as before, complete categories and continuous 
functors between them may be identified with P†-pseudoalgebras and their pseudomor-
phisms.

In [7, §1.1], Isbell describes a construction that, in some sense, combines the pro-
cesses of free completion and cocompletion; while Isbell calls this construction the 
“couple category”, we follow Lawvere in terming it the Isbell envelope. Given a locally 
small category C, the objects of its Isbell envelope IC are triples (X+, X−, ξX) where 
X+ ∈ PC and X− ∈ P†C and ξXab: X−(b) × X+(a) → C(a, b) is a family of functions, 
natural in a and b; while morphisms (X+, X−, ξX) → (Y +, Y −, ξY ) in IC are pairs 
(f+, f−), where f+: X+ → Y + in PC and f−: X− → Y − in P†C are such that each 
square

Y −(b) ×X+(a)
1×f+

f−×1

Y −(b) × Y +(a)

ξY

X−(b) ×X+(a)
ξX

C(a, b)

(1.2)

commutes in Set. There is a Yoneda embedding Y : C → IC into the Isbell envelope, 
whose value at an object c is given by:

(
C(–, c) ∈

[
Cop,Set

]
, C(c, –) ∈ [C,Set],

(
C(c, b) × C(a, c) ◦−→ C(a, b)

) )
,

a,b
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and it is related to the usual two Yoneda embeddings of C through projection functors 
π1 and π2 fitting into a commuting diagram

C

Y
Y Y

PC IC
π1 π2 P†C.

(1.3)

Isbell envelopes have a range of applications. Isbell used them to study normal com-
pletions of categories [8] (the categorical correlate of Dedekind–MacNeille completions 
of posets); they are closely related to constructions in linear logic [3,13], due in part 
to the “self-duality” IC ∼= I(Cop)op; in [16] they were used to study convenient cate-
gories of smooth spaces; and in future work we will see that they play a role in the 
Reedy categories [14] of abstract homotopy theory.1 In this paper, however, our interest 
in Isbell envelopes stems from the following natural question: given that the two outside 
Yoneda embeddings in (1.3) are the units at C of the pseudomonads for small-cocomplete 
and small-complete categories, is there a corresponding pseudomonad whose unit at C
is the central embedding? The main contribution of this paper is answer this question 
in the affirmative; the pseudomonad in question is the Isbell monad of the title, and we 
will characterise its pseudoalgebras as categories equipped with a cylinder factorisation 
system.

By a cylinder between small diagrams D: I → C and E: J → C, we mean a family of 
maps r = (rij : Di → Ej) natural in i and j. A cylinder factorisation system provides a 
way of factorising each such cylinder in an essentially-unique way as a cocone followed by 
a cone; the unicity is assured by the requirement that the two parts of the factorisation 
should lie in suitably orthogonal classes E of cocones and M of cones. Cylinder factori-
sation systems are thus a generalisation of the orthogonal factorisation systems of [5]
from single maps to small families of maps; while certain aspects of this generalisation 
are known in the literature, the complete definition appears to be new; we give it in 
Section 2.

Now our first main result, Theorem 11, exhibits a biadjunction

CFS ⊥ CAT (1.4)

between categories and cylinder factorisation systems on categories, with as unit at C the 
embedding Y : C → IC of (1.3). Composing the biadjoints, we thus exhibit this embedding 
as the unit at C of a pseudomonad on CAT, which is the Isbell monad we seek. Our 
second main result, Theorem 12, shows that the pseudoalgebras for the Isbell monad 
correspond with categories equipped with cylinder factorisation systems; in other words, 

1 Roughly speaking, if C is a Reedy category, then an element of the Isbell envelope IC is what one needs 
to extend C to a Reedy category with one additional object.
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we show that (1.4), like (1.1), is pseudomonadic. This generalises [11]’s characterisation 
of orthogonal factorisation systems as pseudoalgebras for the squaring monad (–)2 on 
CAT.

Our third main result concerns morphisms of cylinder factorisation systems, of which 
we have said nothing so far. Given categories C and D equipped with cylinder factori-
sation systems, the morphisms between them in CFS are functors F : C → D preserving 
both the E-cocones and the M-cones; part of the pseudomonadicity result is that these 
correspond with the pseudomorphisms of Isbell pseudoalgebras. However, we also have 
the more general notion of lax and colax morphisms of pseudoalgebras; and Theorem 13
shows that these correspond to functors F : C → D preserving only M-cones or E-cocones 
respectively.

We conclude the paper by discussing variants of the notion of cylinder factorisation 
systems involving factorisations for only certain kinds of cylinders; our final main re-
sult, Theorem 14, exhibits these as the pseudoalgebras for certain variants of the Isbell 
monad, obtained by constraining the presheaves X+ ∈ PC and X− ∈ P†C that consti-
tute an object of IC to lie in suitable saturated classes [2] of weights for colimits and 
limits.

2. Cylinder factorisation systems

Suppose that D: I → C and E: J → C are diagrams in a category C. By a cocone 
under D with vertex V , we mean a natural transformation p: D → ΔV into the constant 
functor at V , and by a cone over E with vertex W , a natural transformation q: ΔW → E. 
Given a map f : V → W , we may postcompose p or precompose q with it to obtain a 
cocone f · p: D → ΔW or cone q · f : ΔV → E. By a cylinder from D to E, written 
r: D � E, we mean a natural transformation

I
D

rI × J

π1

π2

C,

J E

thus, a natural family of maps (rij: Di → Ej)i,j∈I×J . For example, if J = 1, then E
picks out a single vertex and so a cylinder is simply a cocone; while if I = 1 then a 
cylinder is just a cone. For a further example, if p: D → ΔV is a cocone and q: ΔV → E

a cone, then we have a cylinder q · p: D � E whose components are the family of maps 
(qj · pi: Di → V → Ej)i,j∈I×J .

Definition 1. A cocone p: D → ΔV and a cone q: ΔW → E are said to be orthogonal, 
written p ⊥ q, if for every diagram as in the solid part of
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D
p

h

ΔV

kj

ΔW
q

E,

(2.1)

wherein h is a cocone, k is a cone, and q · h = k · p: D � E, there exists a unique map 
j: V → W as indicated making both triangles commute.

This definition generalises the classical notion of orthogonality of arrows in a cat-
egory [5, §2.1]; it also generalises the notion of orthogonality of discrete cones and 
cocones—ones indexed by discrete categories—formulated in [9, §3], whose special case 
dealing with the orthogonality of an arrow to a discrete cone is already present in [5, §2.4].

The orthogonality of arrows underlies the notion of factorisation system introduced 
in [5, §2.2]; more generally, the orthogonality of arrows to discrete cones plays a role 
in [6]’s notion of (E, M)-category, in which E is a class of arrows, M an orthogonal class 
of discrete cones, and every discrete cone factors as an E-map followed by an M -cone. 
The following definition generalises these notions further to involve orthogonality of 
arbitrary small cocones and cones.

Definition 2. A cylinder factorisation system on a category C comprises a class E of small 
cocones—“small” meaning “indexed by a small category”—and a class M of small cones, 
satisfying the following properties:

(i) E is closed under postcomposition with isomorphisms, and M is closed under pre-
composition with isomorphisms;

(ii) p ⊥ q for all p ∈ E and q ∈ M;
(iii) Each small cylinder r: D � E has a factorisation r = q · p with p ∈ E and q ∈ M.

It follows that E comprises all small cocones p such that p ⊥q for all q ∈ M, and that M
comprises all small cones q such that p ⊥ q for all p ∈ E ; and in fact these two conditions 
together with (iii) gives an alternate axiomatisation of cylinder factorisation systems. 
Every cylinder factorisation system (E , M) has an underlying orthogonal factorisation 
system (E0, M0)—in the sense of [5]—obtained by restricting to cones and cocones over 
diagrams 1 → C. The following result extends one of the basic facts in that theory to 
the cylinder setting.

Lemma 3. Factorisations in a cylinder factorisation system are essentially unique: if the 
cylinder r: D � E admits the (E , M)-factorisations k · p: D → ΔV → E and q · h: D →
ΔW → E, then the unique map j: V → W as in (2.1) is invertible.
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Proof. Mirroring (2.1) through the DE-axis and applying orthogonality again yields a 
filler j′: W → V ; now both j · j′ and 1W fill the square q ·h = q ·h, and so must be equal; 
dually we have j′ · j = 1V . �
Examples 4.

(a) If C is complete, then it admits a cylinder factorisation system (small cocones, limit 
cones). Condition (i) is obvious, while (ii) is easy from the universality of a limiting 
cone. For (iii), we may factorise a cylinder r: D � E as p: D → Δ(limE) followed 
by q: Δ(limE) → E, where q is the limiting cone, and for each i ∈ I, pi: Di → limE

is the unique map with qj · pi = rij for each j ∈ J .
(b) Dually, if C is cocomplete, then it admits a cylinder factorisation system (colimit 

cocones, small cones).
(c) Let C be complete and cocomplete, and let (E0, M0) be an orthogonal factorisation 

system on C. We obtain a cylinder factorisation system (E , M) on C by taking:

E = { p:D → ΔV small : the induced p̄: colimD → V is in E0 }
M = { q: ΔW → E small : the induced q̄:W → limE is in M0 }.

Axiom (i) is clear, while (ii) follows easily on observing that diagrams (2.1) corre-
spond bijectively with squares in C of the form:

colimD
p̄

h̄

V

k̄j

W
q̄

limE.

As for (iii), given r: D � E, we first factorise as q · �: D → Δ(limE) → E as in (a); 
then we factorise � dually as f · p: D → Δ(colimD) → Δ(limE); then we factorise 
f = e · m: colimD → V → limE with e ∈ E0 and m ∈ M0; and finally take our 
desired factorisation to be e · p: D → ΔV followed by q ·m: ΔV → E. It is easy to 
see that any cylinder factorisation system on a complete and cocomplete category is 
induced in this way.

(d) Let C be a complete category which admits (strong epi, mono) factorisations and 
unions of small families of subobjects. Call a small cocone p: D → ΔV covering if 
any monomorphism V ′ � V through which each pi factors is invertible; and call a 
small cone monic if it is in M as defined in (c) for M0 the class of monomorphisms. 
Now C admits the cylinder factorisation system (covering cocones, mono cones). 
Axioms (i) and (ii) are straightforward. For (iii), given a cylinder r: D � E, we first 
factorise as q · p: D → Δ(limE) → E as in (a); next we (strong epi, mono) factorise 
each pi as mi · ei: Di � Hi � limE; then we form the union n: V � limE of the 



522 R. Garner / Advances in Mathematics 274 (2015) 516–537
subobjects mi with inclusions hi: Hi � V ; finally, we obtain our desired factorisation 
as h · e: D → H → ΔV followed by q · n: ΔV → Δ(limE) → E. The only non-trivial 
point is showing that h · e: D → ΔV is covering. So suppose that each component 
hi ·ei factors through some g: V ′ � V . Because each ei is strongly epic, this is equally 
to say that each hi factors through g; thus each n · hi = mi: Hi � limE factors 
through n · g: V ′ � limE; but as n is the union of the mi’s, g must be invertible as 
required.

(e) If the small category C bears a cylinder factorisation system, then all its E-cocones 
must be jointly epimorphic, and all its M-cones jointly monic, by an adaptation of 
an argument due to Freyd (though see also [1, Theorem 15.4]). Indeed, suppose that 
k: ΔV → E is an M-cone, and f �= g: W → V with k · f = k · g: ΔW → E. Let D be 
the discrete diagram comprising |mor C| copies of W , let r: D � E be the cylinder 
comprising |mor C| copies of the cocone kf = kg, and let r = q · p: D → ΔU → E

be an (E , M)-factorisation. Then in the diagram

D

�

p
ΔU

q

ΔV
k

E

there are at least 2|mor C| distinct cones � yielding commutativity; and so by orthog-
onality, at least 2|mor C| distinct maps U → V in C, a contradiction.

We now define appropriate notions of morphism between categories equipped with 
cylinder factorisation systems. In considering cylinder factorisation systems on different 
categories, we will uniformly denote the classes of cocones and cones by E and M; 
normally, context will make clear which E and M are intended, but where confusion 
seems possible, we will subscript them with the name of the category on which they 
reside.

Definition 5. We write CFS for the 2-category whose objects are locally small categories 
equipped with a cylinder factorisation system, whose 1-cells are functors F : C → D such 
that F (E) ⊂ E and F (M) ⊂ M, and whose 2-cells are arbitrary natural transformations. 
We write CFSM and CFSE for the corresponding 2-categories wherein the morphisms 
are required only to preserve M-cones, or only to preserve E-cocones.

Examples 6.

(a) If the complete C and D are equipped with the (all cocones, limit cones) cylinder 
factorisation system, then a functor C → D always preserves E-cocones, and preserves 
M-cones precisely when it is continuous. Dually, if the cocomplete C and D bear the 
(colimit cocones, all cones) cylinder factorisation systems, then a functor between 
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them always preserves M-cones and preserves E-cocones just when it is cocontinuous. 
It follows that CFS contains as full sub-2-categories both the 2-category COCTS
of cocomplete categories and cocontinuous functors, and the 2-category CTS of 
complete categories and continuous functors.

(b) If C and D are cocomplete, then the condition that a morphism F : C → D in 
CFSE must satisfy can be reduced to the requirements that F (E0) ⊂ E0, and that 
F should preserve colimits “up to E0”; meaning that each canonical comparison 
F colimD → colimFD should be in E0. In [10], Kelly calls this condition preserving 
the E0-tightness of colimit cocones. Of course, we have a dual characterisation of 
morphisms of CFSM between complete categories.

(c) It is easy to see that if F � G: D → C, and p is a cocone in C and q a cone in D, 
then Fp ⊥ q if and only if p ⊥ Gq. It follows that, if C and D are equipped with 
cylinder factorisation systems, then F preserves E-cocones if and only if G preserves 
M-cones.

We conclude this section with a technical result, necessary in the sequel, that gives an 
understanding of the effect of cylinder factorisation systems on cylinders which, though 
not small, are “essentially small” in a sense now to be described. Recall that a functor 
K: J ′ → J is called initial if, for each j ∈ J , the comma category K/j is connected; 
which by the pointwise formula for Kan extensions, is equally to say that the triangle

J ′ K

Δ1

1

J

Δ1

Set

is a left Kan extension. The universal property of Kan extension now implies that, for 
each diagram E: J → C and W ∈ C, precomposition with K induces a bijection

[J ,Set]
(
Δ1, C(W,E–)

) ∼=
[
J ′,Set

](
Δ1, C(W,EK–)

)

between cones q: ΔW → E and cones qK: ΔW → EK; which in turn implies a bijection 
between cylinders r: D � E and ones r(1 ×K): D � EK. Dually, a functor H: I ′ → I
is called final if each comma category i/H is connected; which now implies a bijection 
between cocones p: D → ΔV and ones pH: DH → ΔV , and between cylinders r: D � E

and ones r(H × 1): DH � E. It immediately follows that:

Lemma 7. If H: I ′ → I is final, K: J ′ → J is initial, D: I → C and E: J → C, then for 
any cocone p: D → ΔV and any cone q: ΔW → E, we have p ⊥ q iff pH ⊥ qK.

Let us now define a cylinder r: D � E to be essentially small if the category I
indexing D admits a final functor from a small category, and the category J indexing 
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E admits an initial functor from a small category. In particular, this gives a notion of 
essential-smallness for cocones and cones, on identifying these with degenerate cylinders.

For the nonce, we will call a structure as in Definition 2, but where “small” has every-
where been replaced by “essentially small”, an extended cylinder factorisation system. 
Restricting an extended cylinder factorisation system to its small cocones and cones 
yields a cylinder factorisation system; while in the other direction, we have:

Proposition 8. Every cylinder factorisation system (E , M) on C is the underlying cylinder 
factorisation system of a unique extended cylinder factorisation system (E,M); more-
over, any morphism of cylinder factorisation systems F : C → D preserves these extended 
classes, in the sense that F (E) ⊂ E and F (M) ⊂ M.

Proof. Given (E , M), we define classes of essentially small cocones and cones by

E =
{
p:D → ΔV | pH ∈ E for some final H: I ′ → I

}

M =
{
q: ΔW → E | qK ∈ E for some initial K:J ′ → J

}
.

Clearly axiom (i) is satisfied, while (ii) is immediate from Lemma 7. This same lemma 
implies that E comprises precisely those essentially small cocones orthogonal to every 
cone in M, and vice versa, from which uniqueness of (E,M) follows easily. The final 
clause of the proposition is immediate from the definitions, and so it remains only to 
show axiom (iii): that each essentially small r: D � E has an (E ,M)-factorisation. 
Given such an r, choose a final H: I ′ → I and an initial K: J ′ → J with I ′ and 
J ′ small, let r′ = r(H × K): DH � EK, and form q′ · p′: DH → ΔV → EK an 
(E , M)-factorisation of the small r′. Since H is final and K initial, there are unique 
p: D → ΔV and q: ΔV → E with pH = p′ and qK = q′, and clearly p ∈ E and q ∈ M; 
finally, since r(H ×K) = r′ = q′ · p′ = qK · pH = (q · p)(H ×K), we have by finality and 
initiality of H and K that r = q · p, as desired. �

Henceforth, then, there will be no explicit need to speak of extended cylinder factori-
sation systems; instead, we modify our notation by allowing E and M, which previously 
denoted the classes of small cocones and cones of a cylinder factorisation system, to 
denote instead the essentially small cocones and cones in the closures E and M.

3. The free cylinder factorisation system

In this section, we give our first main result, showing that the Isbell envelope IC is 
the free category with a cylinder factorisation system on C. We begin by constructing 
the cylinder factorisation system in question.

Proposition 9. For any category C, the Isbell envelope IC bears a cylinder factorisation 
system whose classes of small cocones and cones are given by:
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E =
{
p:D → ΔV | π1(p) is colimiting in PC

}

M =
{
q: ΔW → E | π2(q) is limiting in P†C

}
,

where π1: IC → PC and π2: IC → P†C are as in (1.3).

Proof. Axiom (i) is clear. For (ii), suppose given a diagram (2.1) in IC with p ∈ E and 
q ∈ M. Applying π1 and π2 we obtain diagrams

D+ p+

h+

Δ(V +)

k+m+

Δ(W+)
q+

E+

and

D− p−

h−

Δ(V −)

k−m−

Δ(W−)
q−

E−

in PC and in P†C respectively. Now p+ is colimiting since p ∈ E ; it is thus orthogonal to 
any small cone, in particular to q+, and so there is a unique diagonal filler m+ as on the 
left. Similarly, q− is limiting since q ∈ M, whence there is a unique diagonal filler m−

as on the right. We claim that (m+, m−): V → W is the required unique diagonal filler 
in IC. The only point to check is that each square as on the left in

W−(b) × V +(a)
1×m+

m−×1

W−(b) ×W+(a)

ξW

V −(b) × V +(a)
ξV

C(a, b)

W−(b) ×Di+(a)
1×m+p+

i

m−×p+
i

W−(b) ×W+(a)

ξW

V −(b) × V +(a)
ξV

C(a, b)

commutes. Now, evaluating the colimiting cocone p+ at a yields a colimiting cocone 
(p+

i (a): Di+(a) → V +(a))i∈I ; so by precomposing with these maps, it is enough to show 
commutativity of the squares on the right above. But by rewriting the bottom side 
using (1.2) for p+

i , this is equally to show that each square

W−(b) ×Di+(a)
1×m+p+

i

p−
i m−×1

W−(b) ×W+(a)

ξW

Di−(b) ×Di+(a)
ξDi

C(a, b)

commutes, which is so by (1.2) for h = mpi.
This verifies (ii); and there remains only (iii). Given, then, a cylinder r: D � E in 

IC, we first apply π1 and π2 to obtain cylinders r+ and r− in the cocomplete PC and 
complete P†C, which we then factor as in (a) and (b) of the preceding section as:
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r+ = D+ p+
−−→ ΔV + q+

−−→ E+ and r− = D− p−
−−→ ΔV − q−−−→ E−

with p+ colimiting and q− limiting. We next define maps ξVab: V −(b) × V +(a) → C(a, b)
making V = (V +, V −, ξV ) into an object of IC. Evaluating the colimiting p+ and lim-
iting q− at each object a and b yields colimiting cocones (p+

i (a): Di+(a) → V +(a))i∈I
and (q−j (b): Ej−(b) → V −(b))j∈J in Set; so to give the ξVab’s is equally to give their 
composites

δabij :Ej−(b) ×Di+(a) → C(a, b)

with the components of these cocones: a family of maps natural in a, b, i, j. To obtain 
such, consider for each a, b, i, j the square (2.1) associated to the map rij : Di → Ej in 
IC; the common diagonal of the two sides gives the desired δabij ’s, whose naturality in 
each variable is easily checked. The (E , M)-factorisation of r in IC is now given by

D

(
p+,p−)

−−−−−−→ Δ
(
V +, V −, ξV

) (
q+,q−

)

−−−−−−→ E;

the only thing left to check is that the components (p+
i , p

−
i ) and (q+

j , q
−
j ) of the cocone 

and the cone are in fact maps of IC. By duality, we need only check the former; thus, 
that each square as on the left in

V −(b) ×Di+(a)
1×p+

i

p−i ×1

V −(b) × V +(a)

ξV

Di−(b) ×Di+(a)
ξDi

C(a, b)

Ej−(b) ×Di+(a)
q−j ×p+

i

p−i q−j ×1

V −(b) × V +(a)

ξV

Di−(b) ×Di+(a)
ξDi

C(a, b)

commutes. Precomposing with the colimit cocone (q−j (b): Ej−(b) → V −(b))j∈J , this 
is equally to show that each square as on the right commutes. The upper side is, by 
definition of ξV , the common diagonal of the square (2.1) associated to rij ; but as 
p−i q

−
j = r−ij , the lower side of the above square is also the lower side of that selfsame (2.1); 

whence commutativity. �
We are almost ready to give our first main result. First we need a preparatory lemma.

Lemma 10. For each X ∈ IC and a, b ∈ C, the action of the functors π1 and 
π2 on morphisms induce homset isomorphisms π1: IC(Y a, X) → PC(Y a, X+) and 
π2: IC(X, Y b) → P†C(X−, Y b).

Proof. To give a map f : Y a → X in IC is to give f+: C(–, a) → X+ in PC together with 
f−: C(a, –) → X− in P†C rendering commutative each diagram
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X−(b) × C(a′, a)
1×f+

f−×1

X−(b) ×X+(a′)

ξX

C(a, b) × C(a′, a) ◦ C(a, b).

(3.1)

This forces the components of f− in Set to be given by ξXab(–, x): X−(b) → C(a, b), where 
x = f+(1a) ∈ X+(a). Thus π1: IC(Y a, X) → PC(Y a, X+) is injective; for surjectivity, 
given any f+ ∈ PC(Y a, X+), we may define f− in the above manner, and verify natu-
rality and commutativity in (3.1) using the Yoneda lemma. The case of π2 is dual. �
Theorem 11. For any category C, the Yoneda embedding Y : C → IC into the Isbell enve-
lope exhibits IC, equipped with the cylinder factorisation system of Proposition 9, as the 
value at C of a left biadjoint to the forgetful 2-functor from CFS to CAT.

Proof. We must show that, for any category D equipped with a cylinder factorisation 
system, the functor

(–) · Y :CFS(IC,D) → CAT(C,D) (3.2)

is an equivalence of categories. First we show full fidelity: thus, given morphisms of 
cylinder factorisation systems F , G: IC → D and a natural transformation α: FY → GY , 
we must find a unique β: F → G with βY = α. So given X ∈ IC, form the category 
of elements U : elX+ → C and dually V : elX− → C; by the Yoneda lemma, we have a 
colimit cocone p+: Y U → ΔX+ in PC—essentially small as X+ is a small colimit of 
representables—and likewise an essentially small limit cone q−: ΔX− → Y V in P†C. By 
Lemma 10, these lift to a cocone p: Y U → ΔX and cone q: ΔX → Y V in IC, necessarily 
in E and M respectively. Now as F (E) ⊂ E and G(M) ⊂ M, the diagram

FY U
Fp

Gp·αU

ΔFX

βX αV ·Fq

ΔGX
Gq

GY V

of cocones and cones in D has top edge in E and bottom edge in M. The composites 
around the two sides agree by naturality of α, and so by orthogonality there is a unique 
diagonal filler βX as shown making both triangles commute. If β: F → G is to extend 
α and be natural, then it must render these triangles commutative; so these βX’s are 
the unique possible choice for an extension, and it remains only to show their naturality 
in X.

So let f : X → X ′ in IC; we have the E-cocone p and M-cone q as before, but now also 
p′: Y U ′ → ΔX ′ and q′: ΔX ′ → Y V ′. We also have functors H = el f+: elX+ → elY +
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and K = el f−: elY − → elX−, satisfying U ′H = U and V K = V ′, and, we claim, 
rendering commutative both triangles—and hence the outside—in:

Y U

p′H

p
ΔX

f qK

ΔX ′
q′

Y V ′.

(3.3)

To see this last claim, note that π1 of the top triangle commutes in PC by the Yoneda 
lemma and definition of H, and similarly π2 of the bottom triangle commutes; now apply 
Lemma 10. Using this, we now show naturality of β at f ; thus that Gf ·βX = βX′ ·Ff . By 
orthogonality it suffices to show equality after precomposition with the E-cocone Fp and 
after postcomposition with the M-cone Gq′. For the former, we have that Gf ·βX ·Fp =
Gf ·Gp · αU = Gp′H · αU = Gp′H · αU ′H = βX′ · Fp′H = βX′ · Ff · Fp; for the latter, 
Gq′ ·Gf · βX = GqK · βX = αV K ·FqK = αV ′ ·FqK = αV ′ ·Fq′ ·Ff = Gq′ · βX′ ·Ff .

This proves that (3.2) is fully faithful; it remains to show essential surjectivity. Given 
F : C → D, we must exhibit a map G: IC → D of cylinder factorisation systems and 
a natural isomorphism GY ∼= F . For each X ∈ IC, let q · p: Y U → ΔX → Y V be 
its canonical essentially small cylinder, as above. Since Y is fully faithful, there is a 
unique cylinder r: U � V with Y r = q · p; now let t · s: FU → ΔGX → FV be an 
(E , M)-factorisation in D of the essentially small Fr: FU � FV . This defines G on 
objects. On morphisms, let f : X → X ′ in IC, and let p, q, p′, q′, H and K be as in 
the preceding paragraph. We have by commutativity in (3.3) and full fidelity of Y that 
r(1 ×K) = r′(H × 1): U � V ′; whence in the diagram on the left in

FU

s′H

s ΔGX

Gf tK

ΔGX ′
t′

FV ′

FU

s′′HgHf

s ΔGX

G(gf) tKfKg

ΔGX ′′
t′′

FV ′′

the composite cylinders Fr(1 ×K) and Fr′(H × 1) are equal. Since s ∈ E and t′ ∈ M, 
we induce by orthogonality a unique filler, as displayed; which gives the action of G on 
morphisms. Clearly, when f = 1X , we have H = K = 1 and s = s′ and t = t′ and the 
unique filler G1X must be 1GX . So G preserves identities; as for binary composition, given 
f : X → X ′ and g: X ′ → X ′′, the map G(gf) is the unique filler for the square on the right 
above; but since Gg ·Gf ·s = Gg ·s′Hf = s′′HgHf and t′′ ·Gg ·Gf = t′Kg ·Gf = tKfKg, 
the map Gg ·Gf is also a filler. So G(gf) = Gg ·Gf and G is a functor.

To see that GY ∼= F : C → D, note that the canonical cylinder r: U � V in C associated 
to Y X ∈ IC has U : C/c → C and V : c/C → C the forgetful functors from the slice and 
coslice, and rf :a→c, g:c→b = gf : a → b; so in particular, r1c,1c

= 1c. Consequently, the 
chosen factorisation t · s: FU → ΔGY c → FV of Fr in D involves maps s1c

: Fc → GY c
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and t1c
: GY c → Fc with t1c

·s1c
= 1Fc. Now as 1c is terminal in C/c, the functor 1 → C/c

picking it out is final: whence by Lemma 7, s1c
, like s, is in E ; dually, t1c

is in M. So 
t1c

· s1c
is an (E , M)-factorisation of 1Fc; but so too is 1Fc · 1Fc, whence by Lemma 3, 

t1c
is invertible, and provides the component at c of the natural isomorphism GY ∼= F .
Finally, we must show that G is a map of cylinder factorisation systems. By duality, 

we need only show that G(E) ⊂ E . So let w: D → ΔX be an E-cocone in IC; we must 
show that Gw: GD → ΔGX is an E-cocone in D. Consider the category elD+ whose 
objects are triples (i ∈ I, a ∈ C, d ∈ Di+a) and whose morphisms (i, a, d) → (i′, a′, d′)
are pairs of f : i → i′ in I and k: a → a′ such that f · d = d′ · k. Clearly there is a functor 
I: elD+ → I sending (i, a, d) to i, but there is also a functor W : elD+ → elX+ sending 
(i, a, d) to (a, w+

i (d)) and sending (f, k) to k. We claim that W is final.
Indeed, for any x ∈ X+a, the comma category (a, x)/W has objects being triples of 

i ∈ I, h: a → b in C and d ∈ Di+b with x = w+
i (d) ·h, and morphisms (i, h, d) → (i′, h′, d′)

being pairs f : i → i′ and k: b → b′ with kh = h′ and d′ · k = f · d. We must show this 
category to be connected. Since any object (i, h, d) admits a map (1i, h) from one of the 
form (i, 1a, d′), it’s enough to show connectedness of the full subcategory on objects of 
this form. This subcategory is equally the full subcategory Aa,x ⊂ el (D–)+a on those 
pairs (i ∈ I, d ∈ Di+a) with x = w+

i (a). Now as w is an E-cocone in IC, its projection 
w+ in PC is colimiting, which is to say that each cocone (w+

i (a): D+
i (a) → X+a)i∈I is 

colimiting; whence Aa,x is connected, (a, x)/W is connected, and so W is final.
Now, let τ · σ: FU → ΔGX → FV be the factorisation defining GX, and for each 

i ∈ I, let ti · si: FUi → ΔGDi → FVi be the corresponding factorisation for GDi. For 
each i ∈ I, let Wi: elDi+ → elX+ be the functor induced by w+

i ; note that we have 
Ui = UWi and commuting diagrams of cocones as on the left in

FUi

si

σWi ΔGX

ΔGDi

Gwi

FUW
σW

s

ΔGX.

GDI

GwI

It follows that the natural s: FUW → GDI whose component at (i, a, d) ∈ elD+ is 
(si)(a,d): Fa → GDi fits into a commuting diagram as on the right above. We are now 
ready to prove that Gw is an E-cocone. Suppose given an M-cone v fitting into a diagram 
of cocones and cones in D as on the left in

GD
Gw

h

ΔGX

k

ΔW
v

E

FUW
GwI·s

hI·s

ΔGX

km

ΔW
v

E

FUi

Gwi·si

hi·si

ΔGX

m k

ΔW
v

E.

Whiskering the cocones with I and precomposing with s yields the commuting diagram 
in the centre. The top edge therein is σW which by Lemma 7 is in E , since σ is so and 
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W is final. So by orthogonality there is a unique m as indicated making both triangles 
commute. This commutativity is equivalent to that of the two triangles on the right for 
every i ∈ I; wherein the condition m ·Gwi ·si = hi ·si for the top triangle, together with 
v ·m · Gwi = k · Gwi = v · hi, implies that m · Gwi = hi, since v ∈ M and si ∈ E . So, 
finally, m is unique such that v ·m = k and m ·Gw = h, thus a unique filler for the left 
square, as required. �
4. Pseudomonadicity

The preceding result shows that the embedding Y : C → IC into the Isbell envelope 
is the unit at C of a biadjunction CFS � CAT. This biadjunction induces a pseu-
domonad I on CAT, and a canonical comparison homomorphism K: CFS → I-Alg, 
whose codomain is the 2-category of I-pseudoalgebras, algebra pseudomorphisms and 
algebra 2-cells. Recall—for instance, from [17, §2]—that an I-pseudoalgebra involves a 
morphism A: IC → C and invertible 2-cells θ: 1C ∼= AY and π: A · μC ∼= A · IA satisfying 
two coherence axioms; and that an algebra pseudomorphism (C, A) → (D, B) involves 
a morphism F : C → D and an invertible 2-cell ϕ: B · IF ∼= FA, also satisfying two 
coherence axioms.

Our second main result states that the canonical comparison K: CFS → I-Alg is a 
biequivalence; in other words, that CFS is pseudomonadic over CAT. We could prove 
this using the pseudomonadicity theorem of [12], but it will be simpler and more illumi-
nating to construct directly a biequivalence inverse.

Theorem 12. The forgetful 2-functor I-Alg → CAT has a (strictly commuting) factori-
sation

I-Alg J CFS

CAT

wherein J is a biequivalence 2-functor satisfying JK = 1; it follows that K is a biequiv-
alence, and so that CFS is pseudomonadic over CAT.

Proof. We first introduce some terminology: given a functor F : C → D and a cylinder 
factorisation system on C, we say that a cocone p: D → ΔV in C is F -nearly in E if, on 
forming an (E , M)-factorisation p = t · s: D → ΔW → ΔV , the map t is inverted by F . 
It is easy to see that if p ∈ E , then p is F -nearly in E ; and that, if G: B → C is a map 
in CFSE , then a cocone p in B is FG-nearly in EB iff Gp is F -nearly in EC . Of course, 
there is the dual notion of a cone being F -nearly in M, with the corresponding dual 
results.
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With this in place, we now define J on objects. Let A: IC → C be an I-pseudoalgebra. 
We define classes of small cocones and cones in C by:

E = { p:D → ΔV | Y p is A-nearly in EIC }
M = { q: ΔW → E | Y q is A-nearly in MIC }, (4.1)

and claim that this provides the required cylinder factorisation system on C. As a first 
step, we prove that A: IC → C has A(E) ⊂ E and A(M) ⊂ M; by duality we need 
only prove the first. So given p ∈ EIC , we must show that Y Ap is A-nearly in EIC . By 
pseudonaturality of the unit of I, we have Y A ∼= IA · Y , so this is equally to show that 
IA ·Y p is A-nearly in EIC. Since IA: IIC → IC is a map of (free) cylinder factorisation 
systems, this is equally to show that Y p is A · IA-nearly in EIIC ; but A · IA ∼= A · μC
since C is a pseudoalgebra, and so this is equally to show that Y p is A ·μC-nearly in EIIC . 
Now as μC is a map of cylinder factorisation systems, this is equally to show that μC ·Y p

is A-nearly in EIC ; finally, since μC · Y ∼= 1, this is equally to show that p is A-nearly in 
EIC , which is certainly so if p ∈ EIC .

We now show that the classes (4.1) verify the axioms (i)–(iii) for a cylinder fac-
torisation system on C. (i) is trivial; for (iii), given a small cylinder r: D � E in C, 
we form an (E , M)-factorisation Y r = q · p in IC; by the above, AY r = Aq · Ap

is an (E , M)-factorisation in C, and so conjugating by the isomorphism θ: 1C ∼= AY

(coming from the pseudoalgebra structure of C) we obtain the desired factorisation 
r = (θ−1E · Aq) · (Ap · θD): D → ΔV → E. It remains to verify (ii). Let p ∈ EC
and q ∈ MC and suppose given a square q · h = k · p as in (2.1). In IC we may form the 
diagram on the left

Y D
s

Y h

ΔX
t

�

ΔY V

Y k

ΔYW
u

ΔY
v

Y E

AYD
AY p

AY h

ΔAY V

AY km

ΔAYW
AY q

AY E,

wherein both rows are (E , M)-factorisations and � is the unique map induced by orthogo-
nality of s and v. Since p ∈ EC and q ∈ MC , applying A inverts u and t, and so we obtain 
a diagonal filler for the square on the right above by taking m = (Au)−1 · A� · (At)−1; 
conjugating by θ: 1C ∼= AY now yields the required filler j = θ−1

W · m · θV : V → W for 
the original square (2.1). To show uniqueness of j, let j′: V → W be another diagonal 
filler; then u · Y j′ · t: ΔX → ΔY fills the rectangle on the left above, and so by or-
thogonality must be �; whence A� = Au · AY j′ · At, so that m = AY j′ and so finally 
j = θ−1

W ·AY j′ · θV = j′.
This defines J on objects; since CFS → CAT is faithful on 1-cells and locally fully 

faithful, the definition on 1- and 2-cells is forced, and all that is required is to show 
that any pseudomorphism F : (C, A) → (D, B) of I-pseudoalgebras preserves the classes 
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of the derived cylinder factorisation systems. So let p be a cocone in C such that Y p is 
A-nearly in EIC ; we must show that Y Fp is B-nearly in EID. By naturality of Y , we 
have Y F ∼= IF · Y , so it’s enough to show that IF · Y p is B-nearly in EID. Since IF
is a map of cylinder factorisation systems, it’s enough to show that Y p is B · IF -nearly 
in EIC ; but B · IF ∼= FA as F is a pseudomorphism, so it’s enough to show that Y p is 
FA-nearly in EIC ; which is so since Y p is A-nearly in EIC .

This completes the definition of J ; we next show that JK = 1. This is immediate 
on 1- and 2-cells, since J and K are both over CAT and CFS → CAT is faithful 
on 1- and 2-cells. To show JK = 1 on objects, let C be a category equipped with a 
cylinder factorisation system; then KC is the pseudoalgebra A: IC → C whose structure 
map is obtained by extending the identity C → C using freeness of IC. Now JKC is the 
category C equipped with the cylinder factorisation system (E ′, M′) where E ′ comprises 
those cocones p such that Y p is A-nearly in EIC; but as A: IC → C is a map of cylinder 
factorisation systems, these are equally the cocones p such that AY p is 1C-nearly in E ; 
that is, the E-cocones. Thus E ′ = E and similarly M′ = M, so that JK is the identity 
on objects as required.

Finally, we show that J is a biequivalence. Being a retraction, it is clearly surjective 
on objects; we claim that it also full on 1-cells and locally fully faithful. For the first 
claim, let (C, A) and (D, B) be I-pseudoalgebras and F : J(C, A) → J(D, B) a map of 
induced cylinder factorisation systems. Then in the left square of

IC IF

A

ID

B

C
F

D

IC

A

IF

ID

B

C
F

α

G

ϕF

D

=

IC

A

IF

Iα

IG

ID

B

C
G

ϕG

D

(4.2)

all four functors are maps of cylinder factorisation systems. Moreover, using the unit 
coherences for (C, A) and (D, B) and pseudonaturality of Y , we have an isomorphism 
α: B · IF · Y ∼= BY F ∼= FAY , and so, by full fidelity of (3.2), a unique invertible 2-cell 
ϕ: B · IF ∼= FA with ϕY = α. This makes (F, ϕ): (C, A) → (D, B) into an algebra 
pseudomorphism with J(F, ϕ) = F ; the first coherence axiom follows immediately from 
ϕY = α, while the second one, equating two parallel morphisms in CAT(IIC, D), follows 
by fidelity of (3.2) on observing these morphisms to reside in CFS(IIC, D) and to have 
the same precomposite with Y : IC → IIC. It remains to show local full fidelity of J ; 
thus, that for any pair of algebra pseudomorphisms (F, ϕF ), (G, ϕG): (C, A) → (D, B)
and any 2-cell α: F ⇒ G, the pasting equality above right holds. This follows, again, by 
observing these pastings to describe parallel morphisms in CFS(IC, D) which coincide 
on precomposition with Y : C → IC. �
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5. Lax and colax morphisms

As well as the 2-category I-Alg, we also have the larger 2-categories I-Alg� and 
I-Algc whose objects are again pseudoalgebras, but whose 1- and 2-cells are now the lax
or colax algebra morphisms and the algebra 2-cells between them. A lax algebra mor-
phism (C, A) � (D, B) comprises a functor F : C → D and a potentially non-invertible 
2-cell ϕ: B · IF ⇒ FA satisfying two coherence axioms; a colax morphism is similar, 
but with the orientation of the non-invertible ϕ now reversed. Our final result identifies 
the lax and colax I-algebra morphisms as the functors preserving only M-cones and 
only E-cocones respectively. As in the preceding section, we could proceed by applying 
a general theorem, in this case the two-dimensional monadicity theorem of [4]; but as in 
the preceding section, it will be simpler and more illuminating to give the constructions 
directly.

Theorem 13. The factorisation of I-Alg → CAT through CFS extends to a factorisation 
of I-Alg� → CAT through CFSM and to one of I-Algc → CAT through CFSE :

I-Alg J CFS

I-Alg�

J� CFSM

CAT

I-Alg J CFS

I-Algc

Jc CFSE

CAT

wherein J� and Jc are biequivalences.

Proof. By duality, we consider only the lax case. First we extend J to J�; of course, J�
must agree with J on objects, and as before the definition is forced on 1- and 2-cells; 
so the only work is showing that, if (F, ϕ): (C, A) � (D, B) is a lax algebra map, then 
F sends MC-cones to MD-cones. So let q: ΔV → E be an MC-cone; we must show 
Fq ∈ MD. Let Y q = t · s: ΔY V → ΔW → Y E be an (E , M)-factorisation in IC, and 
consider the commuting diagram on the left in

ΔB(IF )Y V

B(IF )s

ϕY V

ΔFAY V

FAs

ΔB(IF )W

B(IF )t

ϕW

ΔFAW

FAt

B(IF )Y E
ϕY E

FAY E

ΔFAY V

FAY q

B(IF )s·ϕ−1
Y V

ΔB(IF )W

B(IF )t

FAs−1·ϕW

ΔFAY V

FAY q

FAY E
ϕY E−1

B(IF )Y E
ϕY E

FAY E.
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To say q ∈ MC is to say that Y q is A-nearly in MIC : so FAs is invertible, and by the unit 
coherence axiom for a lax morphism so too are ϕY V and ϕY E. Moreover B(IF )t ∈ MD
since t ∈ MIC and B · IF is a map of cylinder factorisation systems. Thus the diagram 
on the right exhibits FAY q as being a retract of an MD-cone and so, by an easy 
argument, itself an MD-cone; finally, since AY ∼= 1, we have Fq ∼= FAY q an MD-cone 
as required.

This completes the definition of J�, and it remains to show that it is a biequivalence. 
Of course, it is surjective on objects, since J is; we claim it is also full on 1-cells and 
locally fully faithful. We use the fact—generalising full fidelity of (3.2)—that for any 
F ∈ CFSE(IC, D) and G ∈ CFSM(IC, D), the function

(–) · Y :CFSM(IC,D)(F,G) → CAT(C,D)(F,G) (5.1)

is invertible; the proof is precisely the first two paragraphs of the proof of Theorem 11, 
noting that there we only needed that F (E) ⊂ E and that G(M) ⊂ M. To show J� is 
full on 1-cells, let (C, A) and (D, B) be I-pseudoalgebras and let F : J�(C, A) → J�(D, B)
in CFSM; then in the left square of (4.2), the maps along the upper side are in CFS, 
and those along the lower side in CFSM; so by invertibility of (5.1), the isomorphism 
α: B ·IF ·Y ∼= BY F ∼= FAY induces a unique 2-cell ϕ: B ·IF ⇒ FA with ϕY = α. Using 
injectivity of (5.1) and arguing as in the final paragraph of Theorem 12, we may show 
that this makes (F, ϕ): (C, A) � (D, B) into a lax algebra morphism with J�(F, ϕ) = F ; 
so J� is full on 1-cells. In a similar manner, the argument showing local full fidelity of J
generalises using (5.1) to one showing local full fidelity of J�. �
6. (Φ, Ψ)-cylinder factorisation systems

The definition of cylinder factorisation system involves factorisations for all small
cylinders—ones indexed by small categories. However, we could equally well have re-
quired factorisations only for finite cylinders, say, or only for discrete ones. In this final 
section, we exhibit such variant notions as the pseudoalgebras for corresponding vari-
ants of the Isbell monad, obtained by replacing the pseudomonads P and P† used in its 
construction by suitable full submonads thereof.

By a full submonad S of a pseudomonad T on CAT, we mean the choice, for each 
category C, of a full subcategory SC ⊂ T C, with these choices being closed under the 
pseudomonad structure of T in an obvious sense. In the case of P and P†, full submonads 
Φ ⊂ P and Ψ ⊂ P† correspond to saturated classes of weights for colimits or limits in 
the sense of [2] (there called closed classes); the corresponding Φ- or Ψ-pseudoalgebras 
are categories admitting all Φ-weighted colimits or all Ψ-weighted limits, respectively. 
Relative to a choice of full submonads Φ ⊂ P and Ψ ⊂ P†, we may construct a modified 
Isbell envelope whose value at a category C is obtained as a pullback
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IΦ,Ψ(C) IC

(π1,π2)

ΦC × ΨC PC × P†C.

(6.1)

Note that each IΦ,Ψ(C) → IC may be taken to be the inclusion of a full subcategory; if 
we do so, then it is easy to see that these full inclusions assemble together to yield a full 
submonad IΦ,Ψ ⊂ I—whose pseudoalgebras we now characterise.

A diagram D: I → C will be called a Φ-diagram if it admits a factorisation as on the 
left below for some ϕ ∈ ΦC. Dually, E: J → C is a Ψ-diagram if for some ψ ∈ ΨC it 
admits a factorisation as on the right:

I H final

D

elϕ

π

C

J K initial

E

elψ.

π

C

(6.2)

A (Φ, Ψ)-cylinder factorisation system is now defined identically to a cylinder factori-
sation system, except that the cones, cocones and cylinders appearing in the definition 
are restricted to those whose domains and codomains are Φ- and Ψ-diagrams respec-
tively. Categories equipped with (Φ, Ψ)-cylinder factorisation systems are the objects of 
a 2-category CFSΦ,Ψ, whose maps are, as before, functors preserving the cocones and 
cones.

The proof of the following result follows precisely the arguments of the preceding 
sections, but with Φ and Ψ everywhere replacing P and P†, and with Φ-weighted colimits 
and Ψ-weighted limits replacing arbitrary colimits and limits. There is also an analogue 
of Theorem 13, which we do not trouble to state, characterising the lax and oplax algebra 
morphisms in terms of maps preserving only cones or only cocones.

Theorem 14. Given full submonads Φ ⊂ P and Ψ ⊂ P†, we have a pseudomonadic 
adjunction

CFSΦ,Ψ
⊥ CAT

whose unit at C may be taken to be the restricted Yoneda embedding Y : C → IΦ,Ψ(C).

In practice, the notions of Φ-diagram and Ψ-diagram tend to encompass slightly 
more than we would intuitively expect. For example, when Φ = 1CAT, the Φ-diagrams 
are those D: I → C which admit an absolute colimit in C, rather than simply those 
D: 1 → C indexed by the terminal category. Towards rectifying this, we define a class A
of Φ-diagrams to be generating if, for every ϕ ∈ ΦC, there is some D ∈ A fitting into a 
diagram as to the left of (6.2); we define a generating class B of Ψ-diagrams dually. If A
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and B are generating classes, then by using Lemma 7 and arguing as in Proposition 8, 
we may show that a (Φ, Ψ)-cylinder factorisation system is completely and uniquely de-
termined by its cocones, cones, and cylinder factorisations with respect to diagrams in 
A and B.

Examples 15.

(a) Let Φ = P and let Ψ = F be the pseudomonad for finite limits—for which FC
is given by the closure of the representables under finite limits in P†C—with as 
generating class of Ψ-diagrams all diagrams indexed by a finite category. In this case, 
a (Φ, Ψ)-cylinder factorisation system involves factorisations for all cylinders with 
finite codomain. For example, any regular category with pullback-stable unions of 
subobjects admits a (Φ, Ψ)-cylinder factorisation system given by (covering cocones, 
jointly monic cones).

(b) Let Φ = Ψ = 1CAT, and take as generating classes of Φ- and Ψ-diagrams just those 
indexed by the terminal category 1. Then a (Φ, Ψ)-cylinder factorisation system is 
precisely an orthogonal factorisation system; moreover, IΦ,Ψ(C) is the arrow cate-
gory C2, and a short calculation shows the pseudomonad structure of IΦ,Ψ to be 
that of the “squaring” monad (–)2 of [11]. Thus we reconstruct the main result of 
ibid., identifying orthogonal factorisation systems with (–)2-pseudoalgebras.

(c) Let Φ = FamΣ and Ψ = FamΠ be the pseudomonads whose components at C
comprise the coproducts, respectively products, of representables in PC and P†C, 
and take as generating classes of Φ- and Ψ-diagrams just those indexed by dis-
crete categories. A (Φ, Ψ)-cylinder factorisation system now involves factorisations 
of small discrete cylinders—arrays in the terminology of [15]—into discrete cones 
and discrete cocones, and the notion of orthogonality involved is precisely that 
of [9, §3]. In this case, the fact that IΦ,Ψ(C) is the free (Φ, Ψ)-cylinder factori-
sation system is quite palpable, since its objects are precisely the small discrete 
cylinders in C.

(d) Let Φ = 1CAT and Ψ = FamΠ, with generating classes of Φ- and Ψ-diagrams 
as before. In this case, a (Φ, Ψ)-cylinder factorisation system involves factorisa-
tions of discrete cones into E-maps followed by M-cones; it is thus a factorisation 
structure for small sources in the sense of [1, Exercise 15J]. As in the preceding 
example, IΦ,Ψ(C) has a simple description as the category of all small discrete 
cones in C.

(e) Let Φ = (–)⊥ be the pseudomonad which freely adjoins an initial object, with as 
generating class of Φ-diagrams precisely those indexed by 0 or 1; and let Ψ = 1CAT, 
with generating class as before. In this case, a (Φ, Ψ)-cylinder factorisation system 
is an orthogonal factorisation system in which, additionally, every object admits an 
M-map from an object orthogonal to every M-map. As in Examples 2.1(c), this 
second condition follows automatically from the first in the presence of an initial 
object; but there are important cases where initial objects do not exist. For exam-
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ple, a category C admits a (Φ, Ψ)-cylinder factorisation system with M the class 
of all maps just when every A ∈ C admits a map from a strict generic [18]—an 
object G such that, for every X ∈ C, the action of Aut(G) on C(G, X) is free and 
transitive.
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