
Advances in Mathematics 351 (2019) 1024–1071
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Monads and theories ✩

John Bourke a,∗, Richard Garner b

a Department of Mathematics and Statistics, Masaryk University, Kotlářská 2, 
Brno 61137, Czech Republic
b Department of Mathematics, Macquarie University, NSW 2109, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 May 2018
Received in revised form 10 May 
2019
Accepted 13 May 2019
Available online 30 May 2019
Communicated by Ross Street

MSC:
primary 18C10, 18C20

Keywords:
Monad
Lawvere theory
Nerve

Given a locally presentable enriched category E together with 
a small dense full subcategory A of arities, we study the 
relationship between monads on E and identity-on-objects 
functors out of A, which we call A-pretheories. We show that 
the natural constructions relating these two kinds of structure 
form an adjoint pair. The fixpoints of the adjunction are char-
acterised on the one side as the A-nervous monads—those for 
which the conclusions of Weber’s nerve theorem hold—and on 
the other, as the A-theories which we introduce here.
The resulting equivalence between A-nervous monads and 
A-theories is best possible in a precise sense, and extends 
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1. Introduction

Category theory provides two approaches to classical universal algebra. On the one 
hand, we have finitary monads on Set and on the other hand, we have Lawvere theories. 
Relating the two approaches we have Linton’s result [26], which shows that the category 
of finitary monads on Set is equivalent to the category of Lawvere theories. An essential 
feature of this equivalence is that it respects semantics, in the sense that the algebras for 
a finitary monad coincide up to equivalence over Set with the models of the associated 
theory, and vice versa.

There have been a host of generalisations of the above story, each dealing with alge-
braic structure borne by objects more general than sets. In many of these [32,31,22,23], 
one starts on one side with the monads on a given category that preserve a specified 
class of colimits. This class specifies, albeit indirectly, the arities of operations that may 
arise in the algebraic structures encoded by such monads, and from this one may define, 
on the other side, corresponding notions of theory and model. These are subtler than in 
the classical setting, but once the correct definitions have been found, the equivalence 
with the given class of monads, and the compatibility with semantics, follows much as 
before.

The most general framework for a monad–theory correspondence to date involves the 
notions of monad with arities and theory with arities. In this setting, the permissible 
arities of operations are part of the basic data, given as a small, dense, full subcategory 
of the base category. The monads with arities were introduced first, in [35], as a setting 
for an abstract nerve theorem. Particular cases of this theorem include the classical 
nerve theorem, identifying categories with simplicial sets satisfying the Segal condition 
of [33], and also Berger’s nerve theorem [8] for the globular higher categories of [7]. 
More saliently, when Weber’s nerve theorem is specialised to the settings appropriate 
to the monad–theory correspondences listed above, it becomes exactly the fact that the 
functor sending the algebras for a monad to the models of the associated theory is an 
equivalence. This observation led [29] and [9] to introduce theories with arities, and to 
prove, by using Weber’s nerve theorem, their equivalence with the monads with arities. 
The monad–theory correspondence obtained in this way is general enough to encompass 
all of the instances from [32,31,22,23].

Our own work in this paper has two motivations: one abstract and one concrete. Our 
abstract motivation is a desire to explain the apparently ad hoc design choices involved in 
the monad–theory correspondences outlined above. For indeed, while these choices must 
be carefully balanced in order to obtain an equivalence, there is no reason to believe that 
different careful choices might not yield more general or more expressive results.

Our concrete motivation comes from the study of the Grothendieck weak ω-groupoids 
introduced by Maltsiniotis [27], which, by definition, are models of a globular theory in 
the sense of Berger [8]. Globular theories describe algebraic structure on globular sets 
with arities drawn from the dense subcategory of globular cardinals; see Example 8(v)
below. However, globular theories are not necessarily theories with arities, and in partic-
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ular, those capturing higher groupoidal structures are not. As such, they do not appear 
to one side of any of the monad–theory correspondences described above.

The first goal of this paper is to describe a new schema for monad–theory correspon-
dences which addresses the gaps in our understanding noted above. In this schema, once 
we have fixed the process by which a theory is associated to a monad, everything else 
is forced. This addresses our first, abstract motivation. The correspondence obtained in 
this way is in fact best possible, in the sense that any other monad–theory correspondence 
for the same kind of algebraic structure must be a restriction of this particular one. In 
many cases, this best possible correspondence coincides with one in the literature, but in 
others, our correspondence goes beyond what already exists. In particular, an instance 
of our schema will identify the globular theories of [8] with a suitable class of monads 
on the category of globular sets. This addresses our second, concrete motivation.

The further goal of this paper is to study the classes of monads and theories that arise 
from our correspondence-schema. We do so both at a general level, where we will see 
that both the monads and the theories are closed under essentially all the constructions 
one could hope for; and also at a practical level, where we will see how these general 
constructions allow us to give expressive and intuitive presentations for the structure 
captured by a monad or theory.

To give a fuller account of our results, we must first describe how a typical monad–
theory correspondence arises. As in [35], the basic setting for such a correspondence can 
be encapsulated by a pair consisting of a category E and a small, full, dense subcategory 
K : A ↪→ E . For example, the Lawvere theory–finitary monad correspondence for finitary 
algebraic structure on sets is associated to the choice of E = Set and A = F the full 
subcategory of finite cardinals.

Given E and K : A ↪→ E , the goal is to establish an equivalence between a suitable 
category of A-monads and a suitable category of A-theories. The A-monads will be a 
certain class of monads on E ; while the A-theories will be a certain class of identity-
on-objects functors out of A. We are being deliberately vague about the conditions on 
each side, as they are among the seemingly ad hoc design choices we spoke of earlier. 
But regardless of this, the monad–theory correspondence itself always arises through 
application of the following two constructions.

Construction A. For an A-monad T on E , the associated A-theory Φ(T) is the identity-
on-objects functor JT : A → AT arising from the (identity-on-objects, fully faithful) 
factorisation

A JT−−→ AT
VT−−→ ET (1.1)

of the composite FTK : A → E → ET. Here FT is the free functor into the Kleisli category 
ET, so AT is equally the full subcategory of ET with objects those of A.

Construction B. For an A-theory J : A → T , the associated A-monad Ψ(T ) is obtained 
from the category of concrete T -models, which is by definition the pullback
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Modc(T )

UT

[T op, Set]

[Jop,1]

E
NK=E(K−,1)

[Aop, Set] .

(1.2)

Since UT is a pullback of the strictly monadic [Jop, 1], it will be strictly monadic so long 
as it has a left adjoint. The assumption that E is locally presentable ensures that this 
is the case, and so we can take Ψ(T ) to be the monad whose algebras are the concrete 
T -models.

There remains the problem of choosing the appropriate conditions on a monad or 
theory for it to be an A-monad or A-theory. Of course, these must be carefully balanced 
so as to obtain an equivalence, but this still seems to leave too many degrees of freedom; 
one might hope that everything could be determined from E and A alone. The main 
result of this paper shows that this is so: there are notions of A-monad and A-theory 
which require no further choices to be made, and which rather than being plucked from 
the air, may be derived in a principled manner.

The key observation is that Constructions A and B make sense when given as input 
any monad on E , or any “A-pretheory”—by which we mean simply an identity-on-objects 
functor out of A. When viewed in this greater generality, these constructions yield an 
adjunction

Mnd(E)
Φ
⊥ PrethA(E)
Ψ

(1.3)

between the category of monads on E and the category of A-pretheories. Like any adjunc-
tion, this restricts to an equivalence between the objects at which the counit is invertible, 
and the objects at which the unit is invertible. Thus, if we define the A-monads and 
A-theories to be the objects so arising, then we obtain a monad–theory equivalence. By 
construction, it will be the largest possible equivalence whose two directions are given 
by Constructions A and B.

Having defined the A-monads and A-theories abstractly, it behoves us to give tractable 
concrete characterisations. In fact, we give a number of these, allowing us to relate our 
correspondence to existing ones in the literature. We also investigate further aspects of 
the general theory, and provide a wide range of examples illustrating the practical utility 
of our results.

Before getting started, we conclude this introduction with a more detailed outline of 
the paper’s contents. In Section 2, we begin by introducing our basic setting and notions. 
We then construct, in Theorem 6, the adjunction (1.3) between monads and pretheories. 
In Section 3, with this abstract result in place, we introduce a host of running examples 
of our basic setting. To convince the reader of the expressive power of our notions, we 
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construct, via colimit presentations, specific pretheories for a variety of mathematical 
structures.

In Section 4 we obtain our main result by characterising the fixpoints of the monad–
theory adjunction: the A-monads and A-theories described above. The A-monads are 
characterised as what we term the A-nervous monads, since they are precisely those 
monads for which Weber’s nerve theorem holds. The A-theories turn out to be precisely 
those A-pretheories for which each representable is a model; in the motivating case where 
E = Set and A = F , they are exactly the Lawvere theories. With these characterisations 
in place, we obtain our main Theorem 19, which describes the “best possible” equivalence 
between A-theories and A-nervous monads.

Section 5 develops some of the general results associated to our correspondence-
schema. We begin by showing that our monad–theory correspondence commutes, to 
within isomorphism, with the taking of semantics on each side. We also prove that the 
functors taking semantics are valued in monadic right adjoint functors between locally 
presentable categories. The final important result of this section states that colimits of 
A-nervous monads and A-theories are algebraic, meaning that the semantics functors 
send them to limits.

Section 6 is devoted to exploring what the A-nervous monads and A-theories amount 
to in our running examples. In order to understand the A-nervous monads, we prove the 
important result that they are equally the colimits, amongst all monads, of free monads 
on A-signatures. We also introduce the notion of a saturated class of arities as a setting 
in which, like in [32,31,22,23], the A-nervous monads can be characterised in terms of a 
colimit-preservation property. With these results in place, we are able to exhibit many 
of these existing monad–theory correspondences as instances of our general framework.

In Section 7, we examine the relationship between the monads and theories of our 
correspondence, and the monads with arities and theories with arities of [35,29,9]. In 
particular, we see that every monad with arities A is an A-nervous monad but that the 
converse implication need not be true: so A-nervous monads are strictly more general. 
Of course, the same is also true on the theory side. We also exhibit a further important 
point of difference: colimits of monads with arities, unlike those of nervous monads, need 
not be algebraic. This means that there is no good notion of presentation for monads or 
theories with arities.

Finally, in Section 8, we give a number of proofs deferred from Section 6.

2. Monads and pretheories

2.1. The setting

In this section we construct the monad–pretheory adjunction

Mnd(E)
Φ
⊥ PrethA(E) .
Ψ

(2.1)
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The setting for this, and the rest of the paper, involves two basic pieces of data:

(i) A locally presentable V-category E with respect to which we will describe the 
monad–pretheory adjunction; and

(ii) A notion of arities given by a small, full, dense sub-V-category K : A ↪→ E .

We will discuss examples in Section 2.1 below, but for now let us clarify some of the 
terms appearing above. While in the introduction, we focused on the unenriched context, 
we now work in the context of category theory enriched over a symmetric monoidal closed 
category V which is locally presentable as in [13]. In this context, a locally presentable 
V-category [18] is one which is cocomplete as a V-category, and whose underlying ordinary 
category is locally presentable.

We recall also some notions pertaining to density. Given a V-functor K : A → E with 
small domain, the nerve functor NK : E → [Aop,V] is defined by NK(X) = E(K–, X). 
We call a presheaf in the essential image of NK a K-nerve, and we write K-Ner(V) for 
the full sub-V-category of [Aop, V] determined by these.

We say that K is dense if NK is fully faithful; whereupon NK induces an equivalence 
of categories E � K-Ner(V). Finally, we call a small sub-V-category A of a V-category 
E dense if its inclusion functor K : A ↪→ E is so.

2.2. Monads

We write Mnd(E) for the (ordinary) category whose objects are V-monads on E , and 
whose maps S → T are V-transformations α : S ⇒ T compatible with unit and multipli-
cation. For each T ∈ Mnd(E) we have the V-category of algebras UT : ET → E over E , 
but also the Kleisli V-category FT : E → ET under E , arising from an (identity-on-objects, 
fully faithful) factorisation

E
FT FT

ET
WT ET

of the free V-functor FT : E → ET; concretely, we may take ET to have objects those 
of E , hom-objects ET(A, B) = E(A, TB), and composition and identities derived using 
the monad structure of T. Each monad morphism α : S → T induces, functorially in α, 
V-functors α∗ and α! fitting into diagrams

ET α∗

UT

ES

US

E
FS FT

E ES
α! ET ;
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here α∗ sends an algebra a : TA → A to a ◦ αA : SA → A and is the identity on homs, 
while α! is the identity on objects and has action on homs given by the postcomposition 
maps αB ◦ (–) : ES(A, B) → ET(A, B). In fact, every V-functor ET → ES over E or 
V-functor ES → ET under E is of the form α∗ or α! for a unique map of monads α—see, 
for example, [30]—and in this way, we obtain fully faithful functors

Mnd(E)op Alg−−−→ V-CAT/E and Mnd(E) Kl−−→ E/V-CAT . (2.2)

2.3. Pretheories

An A-pretheory is an identity-on-objects V-functor J : A → T with domain A. We 
write PrethA(E) for the ordinary category whose objects are A-pretheories and whose 
morphisms are V-functors commuting with the maps from A. While the A-pretheory is 
only fully specified by both pieces of data T and J , we will often, by abuse of notation, 
leave J implicit and refer to such a pretheory simply as T .

Just as any V-monad has a V-category of algebras, so any A-pretheory has a 
V-category of models. Generalising (1.2), we define the V-category of concrete T -models
Modc(T ) by a pullback of V-categories as below left; so a concrete T -model is an object 
X ∈ E together with a chosen extension of E(K–, X) : Aop → V along Jop : Aop → T op. 
The reason for the qualifier “concrete” will be made clear in Section 5.2 below, where 
we will identify a more general notion of model.

Modc(T )
PT

UT

[T op,V]

[Jop,1]

Modc(S)
PS

US

[Sop,V]
[Hop,1]

[T op,V]

[Jop,1]

E
NK [Aop,V] E

NK [Aop,V]

(2.3)

Remark 1. Avery considers a notion very similar to our A-pretheories under the name 
prototheories [4, Definition 4.1.1]. The differences are that Avery’s prototheories A → T
are not enriched, and the hom-sets of T need not be small. He also defines a category 
of (concrete) models for a prototheory, relative to a given functor E → [Aop, C] called 
an aritation. When this functor is the nerve NK : E → [Aop, Set], his category of models 
agrees with our Modc(T ).

Any A-pretheory map H : T → S gives a functor H∗ : Modc(S) → Modc(T ) over E
by applying the universal property of the pullback on the left of (2.3) to the commuting 
square on the right. In this way, we obtain a semantics functor:

PrethA(E)op Modc−−−−→ V-CAT/E . (2.4)
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However, unlike (2.2), this is not always fully faithful. Indeed, in Example 10 below, 
we will see that non-isomorphic pretheories can have isomorphic categories of concrete 
models over E .

2.4. Monads to pretheories

We now define the functor Φ: Mnd(E) → PrethA(E) in (2.1). As in Construction A of 
the introduction, this will take the V-monad T to the A-pretheory JT : A → AT arising 
as the first part of an (identity-on-objects, fully faithful) factorisation of FTK : A → ET, 
as to the left in:

A

K

JT AT

VT

A

K

JT AT

KT

E
FT ET E FT

ET .

(2.5)

Since the comparison WT : ET → ET is fully faithful, we can also view JT as arising 
from an (identity-on-objects, fully faithful) factorisation as above right; the relationship 
between the two is that KT = WT ◦ VT. Both perspectives will be used in what follows, 
with the functor KT : AT → ET of particular importance.

To define Φ on morphisms, we make use of the orthogonality of identity-on-objects 
V-functors to fully faithful ones; this asserts that any commuting square of V-functors 
as below, with F identity-on-objects and G fully faithful, admits a unique diagonal filler 
J making both triangles commute.

A H

F

C

G

B K

J

D

Explicitly, J is given on objects by Ja = Ha, and on homs by

B(a, b) Ka,b−−−−→ D(Ka,Kb) = D(GHa,GHb) (GHa,Hb)−1

−−−−−−−−−→ C(Ha,Hb) .

In particular, given a map α : S → T of Mnd(E), this orthogonality guarantees the 
existence of a diagonal filler in the diagram below, whose upper triangle we take to be 
the map Φ(α) : Φ(S) → Φ(T) in PrethA(E):

A

JS

JT AT

VT

AS
VS

ES α!
ET .
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2.5. Pretheories to monads

Thus far we have not exploited the local presentability of E . It will be used in the next 
step, that of constructing the left adjoint to Φ: Mnd(E) → PrethA(E). We first state a 
general result which, independent of local presentability, gives a sufficient condition for an 
individual pretheory to have a reflection along Φ. Here, by a reflection of an object c ∈ C
along a functor U : B → C, we mean a representation for the functor C(c, U–) : B → Set.

Theorem 2. A pretheory J : A → T admits a reflection along Φ whenever the forgetful 
functor UT : Modc(T ) → E from the category of concrete models has a left adjoint FT . In 
this case, the reflection ΨT is characterised by an isomorphism EΨT ∼= Modc(T ) over E, 
or equally, by a pullback square

EΨT

UΨT

[T op,V]

[Jop,1]

E
NK [Aop,V] .

(2.6)

To prove this result, we will need a preparatory lemma, relating to the notion of 
discrete isofibration: this is a V-functor U : D → C such that, for each f : c ∼= Ud in C, 
there is a unique f ′ : c′ ∼= d in D with U(f ′) = f .

Example 3. For any V-monad T on C, the forgetful V-functor UT : CT → C is a discrete 
isofibration. Indeed, if x : Ta → a is a T-algebra and f : b ∼= a in C, then the composite 
y = f−1 ◦x ◦Tf : Tb → b is the unique algebra structure on b for which f : (b, y) → (a, x)
belongs to CT. In particular, for any identity-on-objects V-functor F : A → B between 
small V-categories, the functor [F, 1] : [B, V] → [A, V] has a left adjoint and strictly 
creates colimits, whence is strictly monadic. It is therefore a discrete isofibration by the 
above argument.

Lemma 4. Let U : A → B be a discrete isofibration and α : F ⇒ G : X → B an invert-
ible V-transformation. The displayed projections give isomorphisms between liftings of F
through U , liftings of α through U , and liftings of G through U :

A

U

X F

F̄

B

dom←−−−

A

U

X
G

α

ᾱ

F

F̄

Ḡ

B

cod−−−→

A

U

X G

Ḡ

B .

Proof. Given Ḡ : X → A as to the right, there is for each x ∈ X a unique lifting of 
the isomorphism αx : Fx ∼= UḠx to one ᾱx : F̄ x ∼= Ḡx. There is now a unique way of 



J. Bourke, R. Garner / Advances in Mathematics 351 (2019) 1024–1071 1033
extending x 	→ F̄ x to a V-functor F̄ : X → A so that ᾱ : F̄ ∼= Ḡ; namely, by taking the 
action on homs to be F̄x,y = A(ᾱx, ᾱy

−1) ◦ Ḡx,y : X(x, y) → A(F̄ x, F̄ y). In this way, 
we have found a unique lifting of α through U whose codomain is the given lifting of G
through U . So the right-hand projection is invertible; the argument for the left-hand one 
is the same on replacing α by α−1. �

We can now give:

Proof of Theorem 2. UT has a left adjoint by assumption, and—as a pullback of 
the strictly monadic [Jop, 1] : [T op, V] → [Aop, V]—strictly creates coequalisers for 
UT -absolute pairs. It is therefore strictly monadic. Taking ΨT = UT FT to be the induced 
monad, we thus have an isomorphism EΨT ∼= Modc(T ) over E .

It remains to exhibit isomorphisms Mnd(E)(ΨT , S) ∼= PrethA(E)(T , ΦS) natural in S. 
We do so by chaining together the following sequence of natural bijections. Firstly, by full 
fidelity in (2.2), monad maps α0 : ΨT → S correspond naturally to functors α1 : ES →
EΨT rendering commutative the left triangle in

ES

US

α1 EΨT

UΨT

ES α2

US

[T op,V]

[Jop,1]

E E
NK [Aop,V] .

(2.7)

Since EΨT is defined by the pullback (2.6), such functors α1 correspond naturally to 
functors α2 rendering commutative the square above right. Next, we observe that there 
is a natural isomorphism in the triangle below left

ES US

N
FSK

∼=

E

NK

ES α3

N
FSK

[T op,V]

[Jop,1]

[Aop,V] [Aop,V]

(2.8)

with components the adjointness isomorphisms E(Ka, USb) ∼= ES(F SKa, b). Since Jop is 
identity-on-objects, [Jop, 1] is a discrete isofibration by Example 3, whence by Lemma 4
there is a natural bijection between functors α2 as in (2.7) and ones α3 as in (2.8). We 
should now like to transpose this last triangle through the following natural isomorphisms 
(taking X = A, T ):

V-CAT(ES, [X op,V]) ∼= V-CAT(X op, [ES,V]) . (2.9)

However, since ES is large, the functor category [ES, V] will not always exist as a 
V-category, and so (2.9) is ill-defined. To resolve this, note that NF SK is, by its defi-
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nition, pointwise representable; whence so too is α3, since J is identity-on-objects. We 
may thus transpose the right triangle of (2.8) through the legitimate isomorphisms

V-CAT(ES, [X op,V])pwr ∼= V-CAT(X op, [ES,V]rep) (2.10)

where on the left we have the category of pointwise representable V-functors, and on 
the right, the legitimate V-category of representable V-functors ES → V. In this way, we 
establish a natural bijection between functors α3 and functors α4 rendering commutative 
the left square in:

Aop

(F SK)op

Jop

T op

α4(α5)op

A

JS

J T

α5α6

(ES)op
Y

[ES,V]rep AS
KS

ES .

Now orthogonality of the identity-on-objects Jop and the fully faithful Y draws the 
correspondence between functors α4 and functors α5 satisfying α5 ◦ J = F SK as left 
above. Finally, since AS fits in to an (identity-on-objects, fully faithful) factorisation of 
F SK, orthogonality also gives the correspondence, as right above, between functors α5
and functors α6 satisfying α6 ◦ J = JS, as required. �

We now show that the assumed local presentability of E ensures that every pretheory 
has a reflection along Φ: Mnd(E) → PrethA(E), which consequently has a left adjoint. 
The key result about locally presentable categories enabling this is the following lemma.

Lemma 5. Consider a pullback square of V-categories

A F

U

B

V

C G D

(2.11)

in which G and V are right adjoints between locally presentable V-categories and 
V is strictly monadic. Then U and F are right adjoints between locally presentable 
V-categories and U is strictly monadic.

Proof. Since V is strictly monadic, it is a discrete isofibration, and so its pullback against 
G is, by [14, Corollary 1], also a bipullback. By [10, Theorem 6.11] the 2-category of 
locally presentable V-categories and right adjoint functors is closed under bilimits in 
V-CAT, so that both U and F are right adjoints between locally presentable categories. 
Finally, since U is a pullback of the strictly monadic V , it strictly creates coequalisers 



J. Bourke, R. Garner / Advances in Mathematics 351 (2019) 1024–1071 1035
for U -absolute pairs. Since it is already known to be a right adjoint, it is therefore also 
strictly monadic. �

With this in place, we can now prove:

Theorem 6. Let E be locally presentable. Then Φ: Mnd(E) → PrethA(E) has a left adjoint 
Ψ: PrethA(E) → Mnd(E), whose value at the pretheory J : A → T is characterised by 
an isomorphism EΨ(T ) ∼= Modc(T ) over E, or equally, by a pullback square

EΨ(T )

UΨ(T )

[T op,V]

[Jop,1]

E
NK [Aop,V] .

(2.12)

Proof. Let J : A → T be a pretheory. The pullback square (2.3) defining Modc(T ) is a 
pullback of a right adjoint functor between locally presentable categories along a strictly 
monadic one: so it follows from Lemma 5 that UT : Modc(T ) → E is a right adjoint, 
whence the result follows from Theorem 2. �
Remark 7. In Avery’s study of prototheories, he establishes a structure–semantics ad-
junction [4, Theorem 4.4.8] of the form ProtoA(E)op � CAT/E , where here CAT is the 
category of large categories. By restricting to the locally small prototheories to the left 
and to the strictly monadic functors to the right of this adjunction, one can recover, 
via (2.2), the unenriched case of our adjunction (2.1).

3. Pretheories as presentations

In the next section, we will describe how the monad–pretheory adjunction (2.1) re-
stricts to an equivalence between suitable subcategories of A-theories and of A-nervous 
monads. However, the results we have so far are already practically useful. The notion 
of A-pretheory provides a tool for presenting certain kinds of algebraic structure, by 
exhibiting them as categories of concrete T -models for a suitable pretheory in a manner 
reminiscent of the theory of sketches [6]. Equivalently, via the functor Ψ, we can see 
A-pretheories as a way of presenting certain monads on E .

3.1. Examples of the basic setting

Before giving examples of algebraic structures presented by pretheories, we first de-
scribe a range of examples of the basic setting of Section 2.1 above.

Examples 8. We begin by considering the unenriched case where V = Set.
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(i) Taking E = Set and A = F the full subcategory of finite cardinals captures the 
classical case of finitary algebraic structure borne by sets; so examples like groups, 
rings, lattices, Lie algebras, and so on.

(ii) Taking E a locally finitely presentable category and A = Ef a skeleton of the full 
subcategory of finitely presentable objects, we capture finitary algebraic structure 
borne by E-objects. Examples when E = Cat include finite product, finite colimit, 
and monoidal closed structure; for E = CRng, we have commutative k-algebra, 
differential ring and reduced ring structure.

(iii) We can replace “finitary” above by “λ-ary” for any regular cardinal λ. For example, 
when λ = ℵ1, this allows for the structure of poset with joins of ω-chains [28]
when E = Set, and for countable product structure when E = Cat. When E =
[O(X)op, Set] for some space X, and λ is suitably chosen, it also permits sheaf or 
sheaf of rings structure.

(iv) Let G1 be the category freely generated by the graph 0 ⇒ 1, so that E = [Gop
1 , Set]

is the category of directed multigraphs, and let A = Δ0 be the full subcategory of 
[Gop

1 , Set] on graphs of the form

[n] := 0 1 · · · n for n > 0.

Δ0 is dense in [Gop
1 , Set] because it contains the representables [0] and [1]. This 

example captures structure borne by graphs in which the operations build vertices 
and arrows from paths of arrows: for example, the structures of categories, involutive 
categories, and groupoids.

(v) The globe category G is freely generated by the graph

0
τ

σ

1
τ

σ

2
τ

σ

· · ·

subject to the coglobular relations σσ = στ and τσ = ττ . This means that for 
each m > n, there are precisely two maps σm−n, τm−n : n ⇒ m, which by abuse of 
notation we will write simply as σ and τ .

The category E = [Gop, Set] is the category of globular sets; it has a dense sub-
category A = Θ0, first described by Berger [8], whose objects have been termed 
globular cardinals by Street [34]. The globular cardinals include the representables—
the n-globes Y n for each n—but also shapes such as the globular set with distinct 
cells as depicted below.

• • • (3.1)

The globular cardinals can be parametrised in various ways, for instance using trees 
[7,8]; following [27], we will use tables of dimensions—sequences �n = (n1, . . . , nk)
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(

of natural numbers of odd length with n2i−1 > n2i < n2i+1. Given such a table �n
and a functor D : G → C, we obtain a diagram

Dn2 Dn4
. . .

Dnk−1

Dn1 Dn3 Dn5 Dnk−2 Dnk

Dτ Dσ Dτ Dσ Dτ Dσ

whose colimit in C, when it exists, will be written as D(�n), and called the D-globular 
sum indexed by �n. Taking D = Y : G → [Gop, Set], the category Θ0 of globular car-
dinals is now defined as the full subcategory of [Gop, Set] spanned by the Y -globular 
sums. For example, the globular cardinal in (3.1) corresponds to the Y -globular sum 
Y (1, 0, 2, 1, 2).

This example captures algebraic structures on globular sets in which the op-
erations build globes out of diagrams with shapes like (3.1); these include strict 
ω-categories and strict ω-groupoids, but also the (globular) weak ω-categories and 
weak ω-groupoids studied in [7,25,3].

We now turn to examples over enriched bases.

(vi) Let V be a locally finitely presentable symmetric monoidal category whose finitely 
presentable objects are closed under the tensor product (cf. [18]). By taking E = V
and A = Vf a skeleton of the full sub-V-category of finitely presentable objects, 
we capture V-enriched finitary algebraic structure on V-objects as studied in [32]. 
When V = Cat this means structure on categories C built from functors and nat-
ural transformations CI → C for finitely presentable I: which includes symmetric 
monoidal or finite limit structure, but not symmetric monoidal closed or factorisa-
tion system structure. Similarly, when V = Ab, it includes A-module structure but 
not commutative ring structure.

(vii) Taking V as before, taking E to be any locally finitely presentable V-category [18]
and taking A = Ef a skeleton of the full subcategory of finitely presentable objects in 
E , we capture V-enriched finitary algebraic structure on E-objects as studied in [31]. 
As before, there is the obvious generalisation from finitary to λ-ary structure.

viii) This example builds on [23]. Let V be a locally presentable symmetric monoidal 
closed category, and consider a class of V-enriched limit-types Φ with the property 
that the free Φ-completion of a small V-category is again small. A V-functor F : C →
V with small domain is called Φ-flat if its cocontinuous extension LanyF : [Cop, V] →
V preserves Φ-limits, and a ∈ V is Φ-presentable if V(a, –) : V → V preserves colimits 
by Φ-flat weights.

Suppose that if C is small and Φ-complete, then every Φ-continuous F : C → V
is Φ-flat; this is Axiom A of [23]. Then by Proposition 3.4 and §7.1 of [23], we 
obtain an instance of our setting on taking E = V and A = VΦ a skeleton of the 
full sub-V-category of Φ-presentable objects.
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A key example takes V = E = Cat and Φ the class of finite products; where-
upon VΦ is the subcategory F of finite cardinals, seen as discrete categories. This 
example captures strongly finitary [19] structure on categories involving functors 
and transformations Cn → C; this includes monoidal or finite product structure, 
but not finite limit structure.

(ix) More generally, we can take E = Φ-Cts(C, V), the V-category of Φ-continuous func-
tors C → V for some small Φ-complete C, and take A to be the full image of the 
Yoneda embedding Y : Cop → Φ-Cts(C, V). This example is appropriate to the study 
of “Φ-ary algebraic structure on E-objects”—subsuming most of the preceding ex-
amples.

3.2. Pretheories as presentations

We will now describe examples of pretheories and their models in various contexts; 
in doing so, it will be useful to avail ourselves of the following constructions. Given a 
pretheory A → T and objects a, b ∈ T , to adjoin a morphism f : a → b is to form the 
V-category T [f ] in the pushout square to the left of:

2
〈a,b〉

ι

T

ῑ

2 +2 2
〈f,g〉

〈id,id〉

T

ῑ

2
f

T [f ] 2
f=g

T [f =g] .

(3.2)

Here, ι : 2 → 2 is the inclusion of the free V-category on the set {0, 1} into the free 
V-category 2 = {0 → 1} on an arrow. Since ι is identity-on-objects, its pushout ῑ may 
also be chosen thus, so that we may speak of adjoining an arrow to a pretheory J : A → T
to obtain the pretheory J [f ] = ῑ ◦ J : A → T [f ].

Recall from (2.3) that a concrete T -model comprises X ∈ E and F ∈ [T op, V] for 
which F ◦Jop = E(K–, X) : A → V. Thus, by the universal property of the pushout (3.2), 
a concrete T [f ]-model is the same as a concrete T -model (X, F ) together with a map 
[f ] : E(Kb, X) → E(Ka, X) in V.

Similarly given parallel morphisms f, g : a ⇒ b in the underlying category of T we can 
form the pushout above right. In this way we may speak of adjoining an equation f = g

to a pretheory J : A → T to obtain the pretheory J [f = g] = ῑ ◦ J : A → T [f = g]. In 
this case, we see that a concrete T [f =g]-model is a concrete T -model (X, F ) such that 
Ff = Fg : E(Kb, X) → E(Ka, X).

Example 9. In the context of Examples 8(i) appropriate to classical finitary algebraic 
theories—so V = E = Set and A = F—we will construct a pretheory J : F → M whose 
category of concrete models is the category of monoids.

We start from the initial pretheory id : F → F whose concrete models are simply sets, 
and construct from it a pretheory J1 : F → M1 by adjoining morphisms
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m : 1 → 2 and i : 1 → 0 (3.3)

representing the monoid multiplication and unit operations, and also morphisms

m1, 1m : 2 ⇒ 3 and i1, 1i : 2 ⇒ 1 (3.4)

which will be necessary later to express the monoid equations. Note that our directional 
conventions mean that the input arity of these operations is in the codomain rather than 
the domain. It follows from the preceding remarks that a concrete M1-model is a set X
equipped with functions

[m] : X2 → X , [i] : 1 → X , [m1], [1m] : X3 ⇒ X2 , [i1], [1i] : 1 ⇒ X

interpreting the morphisms adjoined above. We now adjoin to M1 the eight equations 
necessary to render commutative the following squares in M1:

1 m

ι1

2
ι1

1 id

ι1

1
ι1

1 i

ι1

0
!

1 id

ι1

1
ι1

1 + 1 m1 2 + 1 1 + 1 1m 1 + 2 1 + 1 i1 1 1 + 1 1i 1

1

ι2

id 1

ι2

1

ι2

m 2

ι2

1

ι2

id 1

id

1

ι2

i 0

!

(3.5)

where ι1, ι2 and ! are the images under J1 of the relevant coproduct injections or maps 
from 0 in F ; together with three equations which render commutative:

1

m

m 2

1m

1

1

m 2

i1

1

1

m 2

1i

2 m1 3 1 1 .

(3.6)

A concrete model for the resulting theory J : F → M is a concrete M1-model (X, F )
for which F op : M1 → Setop sends each diagram in (3.5) and (3.6) to a commuting one. 
Commutativity in (3.5) forces [m1] = [m] × id : X3 → X2 and so on; whereupon com-
mutativity of (3.6) expresses precisely the monoid axioms, so that concrete M-models 
are monoids, as desired. Extending this analysis to morphisms we see that Modc(M) is 
isomorphic to the category of monoids and monoid homomorphisms.

Example 10. In the same way we can describe F -pretheories modelling any of the cat-
egories of classical universal algebra—groups, rings and so on. Note that the same 
structure can be presented by distinct pretheories: for instance, we could extend the 
pretheory M of the preceding example by adjoining a further morphism m11: 3 → 4
and two equations forcing it to become [m] ×1 ×1: X4 → X3 in any model; on doing so, 
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we would not change the category of concrete models. However, in M, all of the maps 
3 → 4 belong to F while in the new pretheory, m11 does not. This non-canonicity will be 
rectified by the theories introduced in Section 4 below; in particular, Corollary 24 implies 
that, to within isomorphism, there is at most one F -theory which captures a given type 
of structure.

Example 11. In the situation of Examples 8(iv), where E = [Gop
0 , Set] is the category of 

directed graphs and A = Δ0, we will describe a pretheory Δ0 → C whose concrete models 
are categories. The construction is largely identical to the example of monoids above. 
Starting from the initial Δ0-pretheory, we adjoin composition and unit maps m : [1] → [2]
and i : [1] → [0] as well as the morphisms 1m, m1: [2] ⇒ [3] and i1, 1i : [2] ⇒ [1] required 
to describe the category axioms.

We now adjoin the necessary equations. First, we have four equations ensuring that 
composition and identities interact appropriately with source and target:

[0] σ

σ

[1]

m

[0] τ

τ

[1]

m

[0] σ

id

[1]

i

[0] τ

id

[1]

i

[1]
ι1 [2] [1]

ι2 [2] [0] [0]

where here we write σ, τ : [0] ⇒ [1] for the two endpoint inclusions, and ι1, ι2 for the 
two colimit injections into [1] τ+σ [1] = [2]. We also require analogues of the eight 
equations of (3.5) and three equations of (3.6). The modifications are minor: replace 
n by [n], the coproduct inclusions ι1 : n → n + m ← m : ι2 by the pushout inclusions 
ι1 : [n] → [n] τ+σ [m] ← [m] : ι2, the first appearance of ! : 0 → 1 by σ : [0] → [1] and 
its second appearance by τ : [0] → [1]. After adjoining these six morphisms and fifteen 
equations, we find that the concrete models of the resulting pretheory Δ0 → C are 
precisely small categories.

We can extend this pretheory to one for groupoids. To do so, we adjoin a morphism 
c : [1] → [1] modelling the inversion plus the further maps 1c : [2] → [2] and c1: [2] →
[2] required for the axioms. Now four equations must be adjoined to force the correct 
interpretation of 1c and c1, plus the two equations for left and right inverses. On doing 
so, the resulting pretheory Δ0 → G has as its concrete models the small groupoids.

Example 12. In the situation of Examples 8(v), where E is the category of globular sets 
and A = Θ0 is the full subcategory of globular cardinals, one can similarly construct 
pretheories whose concrete models are strict ω-categories or strict ω-groupoids. For in-
stance, one encodes binary composition of n-cells along a k-cell boundary (for k < n) 
by adjoining morphisms mn,k : Y (n) → Y (n, k, n) to Θ0. In fact, all of the standard 
flavours of globular weak ω-category and weak ω-groupoid can also be encoded using 
Θ0-pretheories; see Examples 44(v) below.



J. Bourke, R. Garner / Advances in Mathematics 351 (2019) 1024–1071 1041
Example 13. Consider the case of Examples 8(viii) where V = E = Cat and A = F , 
the full subcategory of finite cardinals (seen as discrete categories). We will describe an 
F -pretheory capturing the structure of a monoidal category. In doing so, we exploit the 
fact that our pretheories are no longer mere categories, but 2-categories; so we may speak 
not only of adjoining morphisms and equations between such, but also of adjoining an 
(invertible) 2-cell—by taking a pushout of the inclusion 2 +2 2 → D2 of the parallel pair 
2-category into the free 2-category on an (invertible) 2-cell—and similarly of adjoining 
an equation between 2-cells.

To construct a pretheory for monoidal categories, we start essentially as for monoids: 
freely adjoining the usual maps m, i, m1, 1m, i1, 1i to the initial pretheory, but now also 
morphisms m11, 1m1, 11m : 3 → 4 and 1i1: 3 → 2 needed for the monoidal category 
coherence axioms; thus, ten morphisms in all.

We now add the 8 × 2 = 16 equations asserting that each of the morphisms beyond 
m and i has the expected interpretation in a model, plus1 the equation 1m ◦ m11 =
m1 ◦ 11m : 2 → 4. This being done, we next adjoin invertible 2-cells

1 m

m α

2

m1

2
1m

3

λ

2

i1

1
1

m

1

ρ

2

1i

1
1

m

1

expressing the associativity and unit coherences, as well as the invertible 2-cells

2 m1

m1 α1

3

m11

3
1m1

4

2 1m

1m 1α

3

1m1

3
11m

4

1λ

3

1i1

2
1

1m

2

ρ1

3

1i1

2
1

m1

2

which will be needed to express the coherence axioms. Finally, we must adjoin equations 
between 2-cells: the 2 ×4 = 8 equations ensuring that α1, 1α, 1λ and ρ1 have the intended 
interpretation in any model, plus two equations expressing the coherence axioms:

2 m1

α

3
m11

1

m

m

m

2
1m

m1
α

4

2
1m

3
11m

=

2 m1

m1

α

3
m11

α1

1

m

m

3 1m1

1α

4

2
1m

1m

3
11m

(3.7)

1 It may be prima facie unclear why this is necessary; after all, if 1m, m11, m1 and 11m have the intended 
interpretations in a model, then it is certainly the case that they will verify this equality. Yet this equality 
is not forced to hold in the pretheory, and we need it to do so in order for (3.7) to type-check.
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2 id

α

m1 ρ1

1

m

m

3 1i1

1λ

2

2 id

1m

=

2 id

1

m

m

id 2 .

2 id

All told, we have adjoined ten morphisms, seventeen equations between morphisms, seven 
invertible 2-cells, and nine equations between 2-cells to obtain a pretheory J : F → MC
whose concrete models are precisely monoidal categories.

4. The monad–theory correspondence

In this section, we return to the general theory and establish our “best possible” 
monad–theory correspondence. This will be obtained by restricting the adjunction (2.1)
to its fixpoints: the objects on the left and right at which the counit and the unit are 
invertible. The categories of fixpoints are the largest subcategories on which the ad-
junction becomes an adjoint equivalence, and it is in this sense that our monad–theory 
correspondence is the best possible.

4.1. A pullback lemma

The following lemma will be crucial in characterising the fixpoints of (2.1) on each 
side. Note that the force of (2) below is in the “if” direction; the “only if” is always true.

Lemma 14. A commuting square in V-CAT

A F

H

B

K

C G D

with G fully faithful and H, K discrete isofibrations is a pullback just when:

(1) F is fully faithful; and
(2) An object b ∈ B is in the essential image of F if and only if Kb is in the essential 

image of G.

Proof. If the square is a pullback, then F is fully faithful as a pullback of G. As for (2), 
if Kb ∼= Gc in D then since K is an isofibration we can find b ∼= b′ in B with Kb′ = Gc; 
now by the pullback property we induce a ∈ A with Fa = b′ so that b ∼= Fa as required. 
Suppose conversely that (1) and (2) hold. We form the pullback P of K along G and the 
induced map L as below.
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A F

H

L

P P

Q

B

K

C G D

(4.1)

P is fully faithful as a pullback of G, and F is so by assumption; whence by standard 
cancellativity properties of fully faithful functors, L is also fully faithful.

In fact, discrete isofibrations are also stable under pullback, and also have the same 
cancellativity property; this follows from the fact that they are exactly the maps with the 
unique right lifting property against the inclusion of the free V-category on an object into 
the free V-category on an isomorphism. Consequently, in (4.1), Q is a discrete isofibration 
as a pullback of K, and H is so by assumption; whence by cancellativity, L is also a 
discrete isofibration.

If we can now show L is also essentially surjective, we will be done: for then L is 
a discrete isofibration and an equivalence, whence invertible. So let (b, c) ∈ P. Since 
Kb = Gc, by (2) we have that b is in the essential image of F . So there is a ∈ A and 
an isomorphism β : b ∼= Fa. Now Kβ : Gc = Kb ∼= KFa = GHa so by full fidelity of G
there is γ : c ∼= Ha with Gγ = Kβ; and so we have (β, γ) : (b, c) ∼= La exhibiting (b, c) as 
in the essential image of L, as required. �
4.2. A-theories

We first use the pullback lemma to describe the fixpoints of (2.1) on the pretheory 
side.

Definition 15. An A-pretheory J : A → T is said to be an A-theory if each T (J–, a) ∈
[Aop, V] is a K-nerve. We write ThA(E) for the full subcategory of PrethA(E) on the 
A-theories.

In the language of Section 5.2 below, a pretheory T is an A-theory just when each 
representable T (–, a) : T op → V is a (non-concrete) T -model. When V = E = Set

and A = F , an A-pretheory is an A-theory precisely when it is a Lawvere theory; see 
Examples 44(i) below.

Theorem 16. An A-pretheory J : A → T is an A-theory if and only if the unit component 
ηT : T → ΦΨT of (2.1) is invertible.

Proof. The unit ηT : T → ΦΨT is obtained by starting with α0 = 1: ΨT → ΨT and 
chasing through the bijections of Theorem 6 to obtain α6 = ηT . Doing this, we quickly 
arrive at α2 equal to P , the projection in the depicted pullback square
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EΨT P

UΨT

[T op,V]

[Jop,1]

Aop

(JΨT )op

Jop

T op

α4
α5

op

αop
6

E
NK [Aop,V] (AΨT )op

(KΨT )op
(EΨT )op

Y
[EΨT ,V]rep

(4.2)

defining EΨT . Now α3 : EΨT → [T op, V] is obtained by lifting an isomorphism through 
[Jop, 1] and so we have α3 ∼= P . We obtain α4 by transposing α3 through the isomor-
phism (–)t : V-CAT(EΨT , [T op, V])pwr ∼= V-CAT(T op, [EΨT , V]rep) displayed in (2.10). 
The relationships between α4, α5 and the unit component ηT = α6 are depicted in the 
commutative diagram above right.

The identity-on-objects unit ηT = α6 will be invertible just when it is fully faithful 
which, since KΨT is fully faithful, will be so just when α5 is fully faithful. Now, since 
P ∼= α3 = (α4)t = (Y ◦ αop

5 )t = Nα5 , and P is fully faithful, as the pullback of the fully 
faithful NK , it follows that Nα5 : EΨT → [T op, V] is also fully faithful. As a consequence, 
α5 is fully faithful just when there exists a factorisation to within isomorphism:

Y ∼= Nα5 ◦G : T → EΨT → [T op,V] . (4.3)

Indeed, in one direction, if α5 is fully faithful then the canonical natural transformation 
Y ⇒ Nα5 ◦ α5 is invertible. In the other, given a factorisation as displayed, G is fully 
faithful since Nα5 and Y are. Moreover we have isomorphisms

EΨT (α5b, –) ∼= [T op,V](Y b,Nα5–) ∼= [T op,V](Nα5Gb,Nα5–) ∼= EΨT (Gb, –)

natural in b. So by Yoneda, α5 ∼= G and so α5 is fully faithful since G is so.
This shows that ηT is invertible just when there is a factorisation (4.3). Since Nα5

is fully faithful this in turn is equivalent to asking that each Y b = T (–, b) lies in the 
essential image of α5, or equally in the essential image of the isomorphic P . As the 
left square of (4.2) is a pullback, Lemma 14 asserts that this is, in turn, equivalent to 
each [Jop, 1](Y b) = T (J–, b) being in the essential image of NK ; which is precisely the 
condition that J is an A-theory. �
4.3. A-nervous monads

We now characterise the fixpoints on the monad side. In the following definition, AT, 
JT and KT are as in (2.5).

Definition 17. A V-monad T on E is called A-nervous if

(i) The fully faithful KT : AT → ET is dense;
(ii) A presheaf X ∈ [AT

op, V] is a KT-nerve if and only if X ◦ JT
op is a K-nerve.
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We write MndA(E) for the full subcategory of Mnd(E) on the A-nervous monads.

Note that the adjointness isomorphisms ET(KTJTX, Y ) = ET(FTKX, Y ) ∼=
E(KX, UTY ) for the adjunction FT � UT give a pseudo-commutative square

ET
NKT

UT ∼=

[AT
op,V]

[JT
op,1]

E
NK [Aop,V] ;

(4.4)

as a result of which, [Jop
T , 1] maps KT-nerves to K-nerves. Thus the force of clause (ii) 

of the preceding definition lies in the if direction.

Theorem 18. The counit component εT : ΨΦT → T of (2.1) at a monad T on E is invert-
ible if and only if T is A-nervous.

Proof. εT is obtained by taking α6 = 1: JT → JT and proceeding in reverse order 
through the series of six natural isomorphisms in the proof of Theorem 6. Doing this, we 
quickly reach α3 = NKT . Then α2 : ET → [(AT)op, V] is obtained by lifting the natural 
isomorphism ϕ of (4.4) through the discrete isofibration [Jop

T , 1], yielding a commutative 
square as left below.

ET α2

UT

[(AT)op,V]

[Jop
T ,1]

E
NK [Aop,V]

ET

UT

α1 EΨΦT

UΨΦT

E .

(4.5)

The map α1 : ET → EΨΦT is the unique map to the pullback, and α0 = εT the corre-
sponding morphism of monads. It follows that εT is invertible if and only if the square 
to the left of (4.5) is a pullback. Both vertical legs are discrete isofibrations and NK is 
fully faithful, so by Lemma 14 this happens just when, firstly, α2 is fully faithful, and, 
secondly, X ∈ [Aop

T , V] is in the essential image of α2 if and only if XJT is a K-nerve. But 
as α2 ∼= NKT , and natural isomorphism does not change either full fidelity or essential 
images, this happens just when T is A-nervous. �
4.4. The monad–theory equivalence

Putting together the preceding results now yields the main result of this paper.
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Theorem 19. The adjunction (2.1) restricts to an adjoint equivalence

MndA(E)
Φ
⊥ ThA(E)
Ψ

(4.6)

between the category of A-nervous monads and the category of A-theories.

Proof. Any adjunction restricts to an adjoint equivalence between the objects with in-
vertible unit and counit components respectively, and Theorems 16 and 18 identify these 
objects as the A-theories and the A-nervous monads. �

Note that there is an asymmetry between the conditions found on each side. On the one 
hand, the condition characterising the A-theories among the A-pretheories is intrinsic, 
and easy to check in practice. On the other hand, the condition defining an A-nervous 
monad refers to the associated pretheory, and is non-trivial to check in practice. Indeed, 
one of the main points of [35,9] is to provide a general set of sufficient conditions under 
which a monad can be shown to be A-nervous.

In the sections which follow, we will provide a number of more tractable characterisa-
tions of the A-theories and A-nervous monads; the crucial fact which drives all of these is 
that the adjunction (2.1) is in fact idempotent. Recall that an adjunction L � R : D → C
is idempotent if the monad RL on C is idempotent, and that this is equivalent to asking 
that the comonad LR is idempotent, or that any one of the natural transformations Rε, 
εL, ηR and Lη is invertible.

Theorem 20. The adjunction (2.1) is idempotent.

Proof. We show for each T ∈ Mnd(E) that the unit ηΦT : ΦT → ΦΨΦT is invertible. 
By Theorem 16, this is equally to show that JT : A → AT is an A-theory, i.e., that 
each AT(JT–, JTa) ∈ [Aop, V] is a K-nerve. But AT(JT–, JTa) ∼= ET(FTK–, FTKa) ∼=
E(K–, UTFTKa) = E(K–, TKa) as required. �

Exploiting the alternative characterisations of idempotent adjunctions listed above, 
we immediately obtain the following result, which tells us in particular that a monad T
is A-nervous if and only if it can be presented by some A-pretheory.

Corollary 21. A monad T on E is A-nervous if and only if T ∼= ΨT for some A-pretheory 
J : A → T ; while an A-pretheory J : A → T is an A-theory if and only if T ∼= ΦT for 
some monad T on E.

The next result also follows directly from the definition of idempotent adjunction.

Corollary 22. The full subcategory MndA(E) ⊆ Mnd(E) is coreflective via ΨΦ, while the 
full subcategory ThA(E) ⊆ PrethA(E) is reflective via ΦΨ.
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5. Semantics

In the next section, we will explicitly identify the A-nervous monads and A-theories 
for the examples listed in Section 2.1. Before doing this, we study further aspects of the 
general theory, namely those related to the taking of semantics.

5.1. Interaction with the semantics functors

We begin by examining the interaction of our monad–theory correspondence with the 
semantics functors of Section 2. In fact, we begin at the level of the monad–pretheory 
adjunction (2.1).

Proposition 23. There is a natural isomorphism θ as on the left in:

PrethA(E)op Ψop

Modc

θ

Mnd(E)op

Alg

Mnd(E)op Φop

Alg

θ̄

PrethA(E)op

Modc

V-CAT/E V-CAT/E .

Let θ̄ be its mate under the adjunction Φop � Ψop, as right above. The component of θ̄
at T ∈ Mnd(E) is invertible if and only if T is A-nervous.

Proof. For the first claim, Theorem 6 provides the necessary natural isomorphisms 
θT : EΨT → Modc(T ) over E . For the second, if we write as before εT : ΨΦT → T
for the counit component of (2.1) at T ∈ Mnd(E), then the T-component of θ̄ is the 
composite θΨT ◦ (εT)∗ : ET → EΨΦT → Modc(ΦT ) over E . Since θΨT is invertible and 
since Alg is fully faithful, θ̄T will be invertible just when εT is so; that is, by Theorem 18, 
just when T is A-nervous. �

From this and the fact that each monad ΨT is A-nervous, it follows that an 
A-pretheory T and its associated theory ΦΨT have isomorphic categories of concrete 
models. By contrast, the passage from a monad T to its A-nervous coreflection ΨΦT
may well change the category of algebras. For example, the power-set monad on Set, 
whose algebras are complete lattices, has its F -nervous coreflection given by the finite-
power-set monad, whose algebras are ∨-semilattices. However, if we restrict to A-nervous 
monads and A-theories, then the situation is much better behaved.

Theorem 24. The monad–theory equivalence (4.6) commutes with the semantics functors; 
that is, we have natural isomorphisms:
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ThA(E)op Ψop

Modc

θ

MndA(E)op

Alg

MndA(E)op Φop

Alg

θ̄

ThA(E)op

Modc

V-CAT/E V-CAT/E .

(5.1)

Moreover, both Modc : ThA(E)op → V-CAT/E and Alg : MndA(E)op → V-CAT/E are 
fully faithful functors.

Proof. The first statement follows from Proposition 23. For the second, note that 
the functor Alg : MndA(E)op → V-CAT/E is obtained by restricting the fully faithful 
Alg : Mnd(E)op → V-CAT/E along a full embedding, and so is itself fully faithful. It 
follows that Modc

∼= Alg ◦ Ψop : ThA(E)op → V-CAT/E is also fully faithful. �
Full fidelity of Modc : ThA(E)op → V-CAT/E means that an A-theory is determined 

to within isomorphism by its category of concrete models over E . This rectifies the 
non-uniqueness of pretheories noted in Example 10 above.

5.2. Non-concrete models

In Section 2.3 we defined a concrete model of an A-pretheory T to be an object 
X ∈ E endowed with an extension of E(K–, X) : Aop → V to a functor T op → V. In 
the literature, one often encounters a looser notion of model for a theory, in which an 
underlying object in E is not provided. In our setting, this notion becomes the following 
one: by an (unqualified) T -model, we mean a functor F : T op → V whose restriction 
FJop : Aop → V is a K-nerve.

The T -models span a full sub-V-category Mod(T ) of [T op, V]. Recalling from Sec-
tion 2.1 that K-Ner(V) denotes the full sub-V-category of [Aop, V] on the K-nerves, we 
may also express Mod(T ) as a pullback as to the right in:

Modc(T )

PT

UT

Mod(T )

WT

[T op,V]

[Jop,1]

E
NK

K-Ner(V) [Aop,V] .

(5.2)

On the other hand, Modc(T ) is the pullback around the outside, and so there is a 
canonical induced map Modc(T ) → Mod(T ) as displayed. By the usual cancellativity 
properties, the left square above is now also a pullback. Moreover, WT is an isofibra-
tion, as a pullback of the discrete isofibration [Jop, 1], and NK : E → K-Ner(V) is an 
equivalence. Since equivalences are stable under pullback along isofibrations, we conclude 
that:
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Proposition 25. The comparison Modc(T ) → Mod(T ) in (5.2) is an equivalence.

Taking non-concrete models gives rise to a semantics functor landing in the category 
V-CAT/K-Ner(V) which, like before, is not fully faithful on A-pretheories, but is so on 
the subcategory of A-theories. Note that the “underlying K-nerve” of a T -model is more 
natural than it might seem, being the special case of the functor Mod(T ) → Mod(S)
induced by a morphism of A-pretheories for which S is the initial pretheory. However, 
in the following result, for simplicity, we view the semantics functors for T -models as 
landing simply in V-CAT.

Theorem 26. The monad–theory equivalence (4.6) commutes with the non-concrete se-
mantics functors in the sense that we have natural transformations

ThA(E)op Ψop

Mod

θ

MndA(E)op

Alg

MndA(E)op Φop

Alg

θ̄

ThA(E)op

Mod

V-CAT V-CAT

whose components are equivalences in V-CAT.

Proof. First postcompose the natural isomorphisms (5.1) with the forgetful functor 
V-CAT/E → V-CAT. Then paste the resulting natural isomorphisms with the natural 
transformation Modc ⇒ Mod: ThA(E)op → V-CAT coming from the previous proposi-
tion. �
5.3. Local presentability and algebraic left adjoints

Next in this section, we consider the categorical properties of the V-categories and 
V-functors in the image of the semantics functors. We begin with the case of pretheories.

Proposition 27.

(i) If J : A → T is an A-pretheory then Modc(T ) is locally presentable and 
UT : Modc(T ) → E is a strictly monadic right adjoint.

(ii) If H : T → S is a map of A-pretheories, then H∗ : Modc(S) → Modc(T ) is a 
strictly monadic right adjoint.

Proof. (i) follows from Lemma 5 and the description in (2.3) of Modc(T ) → E as a pull-
back. For (ii), applying the standard cancellativity properties to the pullbacks defining 
Modc(S) and Modc(T ) yields a pullback square
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Modc(S)
PS

H∗

[Sop,V]

[Hop,1]

Modc(T )
PT [T op,V] .

Since [Hop, 1] is strictly monadic and PT is a right adjoint between locally presentable 
categories, the result follows again from Lemma 5. �

Composing with the equivalence Modc(T ) � Mod(T ) of Proposition 25, this result 
immediately implies the local presentability of the category Mod(T ) of non-concrete 
models. Likewise, in the non-concrete setting, the analogue of Proposition 27 remains true 
on replacing “strict monadicity” by “monadicity” throughout. On the other hand, taken 
together with Proposition 23, the preceding result immediately implies the corresponding 
one for nervous monads. We state this here as:

Proposition 28.

(i) If T is an A-nervous monad then ET is locally presentable, and UT : ET → E is a 
strictly monadic right adjoint.

(ii) If α : T → S is a map of A-nervous monads, then α∗ : ES → ET is a strictly monadic 
right adjoint.

5.4. Algebraic colimits of monads and theories

To conclude this section, we examine the interaction of the semantics functors with 
colimits. We begin with the more-or-less classical case of the semantics functor for monads 
Alg : Mnd(E)op → V-CAT/E .

In general, Mnd(E) need not be cocomplete. Indeed, when V = E = Set, it does 
not even have all binary coproducts; see [5, Proposition 6.10]. However many colimits 
of monads do exist, and an important point about these is that, in the terminology 
of [16], they are algebraic. That is, they are sent to limits by the semantics functor 
Alg : Mnd(E)op → V-CAT/E .

To prove this, we use the following lemma, which is a mild variant of the standard 
result that right adjoints preserve limits.

Lemma 29. Let C be a complete (ordinary) category with a strongly generating class of 
objects X and consider a functor U : A → C. If each x ∈ X admits a reflection along U
then U preserves any limits that exist in A.

Proof. As X is a strong generator, the functors C(x, –) with x ∈ X jointly reflect iso-
morphisms, and so jointly reflect limits. Accordingly U preserves any limits that are 
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preserved by C(x, U–) for each x ∈ X. But each C(x, U–) is representable and so pre-
serves all limits; whence U preserves any limits that exist. �

In the setting of Set-enriched categories the following result, which expresses the 
algebraicity of colimits of monads, is a special case of Proposition 26.3 of [16].

Proposition 30. Alg : Mnd(E)op → V-CAT/E preserves limits.

Proof. The V-functors F : X → E with small domain form a strong generator for 
V-CAT/E . Moreover, it is shown in [12, Theorem II.1.1] that each such F has a reflection 
along Alg : Mnd(E)op → V-CAT/E given by its codensity monad RanF (F ) : E → E . The 
result thus follows from Lemma 29. �

We now adapt the above results concerning Mnd(E) to the cases of PrethA(E), 
MndA(E) and ThA(E). In Theorem 38 below, we will see that these categories are locally 
presentable; in particular, and by contrast with Mnd(E), they are cocomplete. It is also 
not difficult to prove the cocompleteness directly.

Proposition 31. Each of the semantics functors Alg : MndA(E)op → V-CAT/E,
Modc : PrethA(E)op → V-CAT/E and Modc : ThA(E)op → V-CAT/E preserves limits.

Proof. These three functors are isomorphic to the respective composites:

MndA(E)op inclop−−−−→Mnd(E)op Alg−−−→ V-CAT/E (5.3)

PrethA(E)op Ψop

−−−→Mnd(E)op Alg−−−→ V-CAT/E (5.4)

ThA(E)op Ψop

−−−→Mnd(E)op Alg−−−→ V-CAT/E ; (5.5)

for (5.3) this is clear, while for (5.4) and (5.5) it follows from Proposition 23. The 
common second functor in each composite is limit-preserving by Proposition 30, while 
the first functor is limit-preserving in each case since it is the opposite of a left adjoint 
functor—by Corollary 22, Theorem 6 and Theorem 19 (taken together with Corollary 22) 
respectively. �

We leave it to the reader to formulate this result also for non-concrete models.

6. The monad–theory correspondence in practice

In this section, we return to the examples of our general setting described in Sec-
tion 2.1, with the goal of describing as explicitly as possible what the A-nervous monads, 
the A-theories, and the corresponding models look like in each case. By way of these 
descriptions, we will re-find many of the monad–theory correspondences existing in the 
literature as instances of our main Theorem 19.
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To obtain our explicit descriptions, we will require some further results which charac-
terise A-theories and A-nervous monads in particular situations. We begin this section 
by describing these results.

6.1. Theories in the presheaf context

A number of the examples of our basic setting described in Section 3.1 arise in the 
following manner. We take E = [Cop, V] a presheaf category, and take A to be any 
full subcategory of E containing the representables. In this situation, we then have a 
factorisation

C I A K [Cop,V] = E (6.1)

of the Yoneda embedding. The Yoneda lemma implies that Y : C → [Cop, V] is dense, 
whereupon by Theorem 5.13 of [17], both I and K are too. In particular, K provides an 
instance of our basic setting; we will call this the presheaf context. Each of Examples 8(i), 
(iv), (v), (vi), and (viii) arise in this way.

Lemma 32. In the presheaf context, we have NI
∼= K and NK

∼= RanIop . Moreover, a 
functor F : Aop → V is a K-nerve just when it is the right Kan extension of its restriction 
along Iop : Cop → Aop.

Proof. For the first isomorphism we calculate that

NI(x) = A(I–, x) ∼= [Cop,V](KI–,Kx) = [Cop,V](Y –,Kx) ∼= Kx (6.2)

by full fidelity of K and the Yoneda lemma. For the second, since LanY K � NK

and [Iop, 1] � RanIop it suffices to show LanY K ∼= [Iop, 1] : [Aop, V] → [Cop, V]. Since 
both are cocontinuous, it suffices to show (LanY K)Y ∼= [Iop, 1]Y , which follows since 
(LanY K)Y ∼= K ∼= NI = [Iop, 1]Y using full fidelity of Y and (6.2). Finally, since Iop is 
fully faithful, F : Aop → V is a right Kan extension along Iop just when it is the right 
Kan extension of its own restriction. Thus the final claim follows using the isomorphism 
NK

∼= RanIop . �
In this setting, we have practically useful characterisations of the A-theories and their 

(non-concrete) models.

Proposition 33. Let J : A → T be an A-pretheory in the presheaf context (6.1).

(i) A functor F : T op → V is a T -model just when FJop : Aop → V is the right Kan 
extension of its restriction along Iop : Cop → Aop;

(ii) J : A → T is itself an A-theory just when it is the pointwise left Kan extension of 
its restriction along I : C → A.
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Proof. (i) follows immediately from Lemma 32 since, by definition, F is a T -model just 
when FJop is a K-nerve. For (ii), note that by Proposition 4.46 of [17], J : A → T is 
the pointwise left Kan extension of its restriction along I just when, for each x ∈ T , the 
functor T (J–, x) : Aop → V is the right Kan extension of its restriction along Iop. By 
Lemma 32, this happens just when each T (J–, x) is a K-nerve—that is, just when J is 
a A-theory. �

We can sharpen these results using Day’s notion of density presentation [11]. The 
density of an ordinary functor K : C → D is often introduced as the assertion that each 
object of D is the colimit of a certain diagram in the image of K. It is this perspective 
that the notion of density presentation generalises.

A family of colimits Φ in the ordinary category D is a class of diagrams (Di : Ji →
D)i∈I each of which has a colimit in D. In the enriched case, a family of colimits Φ in the 
V-category D is a class of pairs (Wi ∈ [J op

i ,V], Di : Ji → D)i∈I such that each weighted 
colimit Wi � Di exists in D. In either case, a full replete subcategory B of D is closed 
in D under Φ-colimits if it contains the (weighted) colimit of any Di in Φ whenever it 
contains each vertex of Di. We say that D is the closure of B under Φ-colimits if the 
only replete full subcategory of D containing B and closed under Φ-colimits is D itself.

Now given a fully faithful K : C → D, we say that a colimit in D is K-absolute if it 
is preserved by NK , or equivalently, by each representable D(Kx, –) : D → V. If D is 
the closure of C under a family Φ of K-absolute colimits then Φ is said to be a density 
presentation for K. The nomenclature is justified by Theorem 5.19 of [17], which, among 
other things, says that the fully faithful K has a density presentation just when it is 
dense.

We will make use of density presentations in the presheaf context (6.1) with respect 
not to the dense K, but to the dense I. By Lemma 32 we have NI

∼= K, and so the 
I-absolute colimits are in this case those preserved by K : A → E . We will see numerous 
instances of this situation in Section 6.3 below; we give a couple of examples now to 
clarify the ideas.

Examples 34.

(i) Example 8(i) corresponds to the presheaf context

1 I
F

K
Set ,

and here I has a density presentation given by all finite copowers of 1 ∈ F ; these 
are I-absolute since K preserves them. In fact, F has all finite coproducts and these 
are preserved by K, so that there is a larger density presentation given by all finite 
coproducts in F .

(ii) Example 8(iv) yields the presheaf context below, wherein I has a density presenta-
tion given by the wide pushouts [n] ∼= [1] +[0] [1] +[0] . . . +[0] [1]:
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G1
I Δ0

K [G1
op, Set] .

The reason we care about density presentations is the following result, which comprises 
various parts of Theorem 5.29 of [17].

Proposition 35. Let K : C → D be fully faithful and dense. The following are equivalent:

(i) F : D → E is the pointwise left Kan extension of its restriction along K;
(ii) F sends Φ-colimits to colimits for any density presentation Φ of K;
(iii) F sends K-absolute colimits to colimits.

Combined with Proposition 33, this yields the desired sharper characterisation of the 
A-theories and their models.

Theorem 36. Let J : A → T be an A-pretheory in the presheaf context (6.1), and let Φ
be a density presentation for I.

(i) A functor F : T op → V is a T -model just when FJop : Aop → V sends Φ-colimits 
in A to limits in V;

(ii) J : A → T is an A-theory just when it sends Φ-colimits to colimits.

6.2. Nervous monads, signatures and saturated classes

We now turn from characterisations for A-theories to characterisations for A-nervous 
monads. We know from Corollary 21 that a monad is A-nervous just when it is isomor-
phic to ΨT for some A-pretheory J : A → T , and the examples in Section 3 make it 
an intuitively reasonable idea that these are the monads which can be “presented by 
operations and equations with arities from A”.

Our first characterisation result makes this idea precise by exhibiting the category of 
A-nervous monads as monadic over a category of signatures. We defer the proof of this 
result to Section 8.

Definition 37. The category SigA(E) of signatures is the category V-CAT(obA, E). We 
write V : Mnd(E) → SigA(E) for the functor sending T to (Ta)a∈A.

Theorem 38. V : Mnd(E) → SigA(E) has a left adjoint F : SigA(E) → Mnd(E) taking 
values in A-nervous monads. Moreover:

(i) The restricted functor V : MndA(E) → SigA(E) is monadic;
(ii) A monad T ∈ Mnd(E) is A-nervous if and only if it is a colimit in Mnd(E) of 

monads in the image of F ;
(iii) Each of MndA(E), PrethA(E) and ThA(E) is locally presentable.
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The idea behind this result originates in [20]. A signature Σ ∈ SigA(E) specifies for 
each a ∈ A an E-object Σa of “operations of input arity a”. The free monad FΣ on this 
signature has as its algebras the Σ-structures: objects X ∈ E endowed with a function 
E(a, X) → E(Σa, X) for each a ∈ A. The above result implies that a monad T ∈ Mnd(E)
is A-nervous just when it admits a presentation as a coequaliser FΓ ⇒ FΣ � T—that is, 
a presentation by a signature Σ of basic operations together with a family Γ of equations 
between derived operations.

We now turn to our second characterisation result for A-nervous monads. This is 
motivated by the fact, noted in the introduction, that in many monad–theory correspon-
dences the class of monads can be characterised by a colimit-preservation property. To 
reproduce this result in our setting, we require a closure property of the arities in the 
subcategory A which, roughly speaking, says that substituting A-ary operations into 
A-ary operations again yields A-ary operations.

Definition 39. An endo-V-functor F : E → E is called A-induced if it is the pointwise 
left Kan extension of its restriction along K. We call A a saturated class of arities if 
A-induced endofunctors of E are closed under composition.

Example 40. In the case of K : F ↪→ Set, there is a density presentation for K given 
by all filtered colimits in Set, so that by Proposition 35, an endofunctor Set → Set is 
F -induced just when it preserves filtered colimits. Thus F ↪→ Set is a saturated class of 
arities.

Example 41. More generally, if Φ is a class of enriched colimit-types and K : A → E
exhibits E as the free cocompletion of A under Φ-colimits, then there is a density pre-
sentation of K given by all Φ-colimits, and an endofunctor of E is K-induced just when 
it preserves Φ-colimits. Thus A is a saturated class of arities.

Example 42. Let K : A ↪→ Set be the inclusion of the one-object full subcategory A on 
the two-element set 2 = {0, 1}. Since the dense generator 1 of Set is a retract of 2, and 
taking retracts does not change categories of presheaves, A is dense in Set. We claim it 
does not give a saturated class of arities.

To see this, note first that (–)2 : Set → Set is A-induced, being a left Kan extension 
along K of the representable A(2, –) : A → Set. We claim that (–)2◦(–)2 is not A-induced. 
For indeed, by the Yoneda lemma, any X ∈ [A, Set] has an epimorphic cover by copies of 
the unique representable A(2, –). Since left Kan extension preserves epimorphisms, each 
LanK(X) admits an epimorphic cover by copies of (–)2. But (–)2 ◦ (–)2 ∼= (–)4 can admit 
no such cover, since the identity map on 4 does not factor through 2, and so cannot be 
A-induced.

The proof of the following result will again be deferred to Section 8 below.
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Theorem 43. Let A be a saturated class of arities in E. The following are equivalent 
properties of a monad T ∈ Mnd(E):

(i) T is A-nervous;
(ii) T : E → E is A-induced;
(iii) T : E → E preserves Φ-colimits for any density presentation Φ of K.

6.3. The monad–theory equivalence in practice

We now apply our characterisation results to the examples of Section 2.1. In many 
cases, the explicit descriptions we obtain of the A-nervous monads, the A-theories, and 
their models will allow us to reconstruct a familiar monad–theory correspondence from 
the literature.

Examples 44. As before, we begin with the unenriched examples where V = Set.

(i) The case E = Set and A = F corresponds to the instance of the presheaf context 
described in Examples 34(i). Applied to the density presentations for I given there, 
Theorem 36 tells us that an F -pretheory J : F → T is an F -theory just when it 
preserves finite copowers of 1, or equally (using the larger density presentation) all 
finite coproducts. It thus follows that the F -theories are the Lawvere theories of [24]. 
Moreover a functor F : T op → Set is a T -model if and only if FJop : Fop → Set

preserves finite products. Since, in this case, J also reflects finite coproducts, this 
happens just when F : T op → Set is itself finite-product-preserving, that is, just 
when F is a model of the Lawvere theory T .

On the other hand, by Example 40, F is a saturated class of arities, and the 
F -induced endofunctors are the finitary ones; so by Theorem 43, a monad on Set
is F -nervous just when it is finitary. Theorem 19 thus specialises to the classical 
finitary monad–Lawvere theory correspondence, while Theorem 26 recaptures its 
compatibility with semantics.

(ii) When E is locally finitely presentable and A = Ef , the category of K-nerves 
is, by [13, Kollar 7.9], the full subcategory of [Eop

f , Set] on the finite-limit-
preserving functors. So an Ef -pretheory J : Ef → T is an Ef -theory just when 
each T (J–, a) : Ef op → Set preserves finite limits. By the Yoneda lemma, this hap-
pens just when J preserves finite colimits, so that the Ef -theories are precisely [31]’s 
Lawvere E-theories.

The concrete T -models in this setting are exactly the models of [31, Defi-
nition 2.2]. The general T -models are those functors F : T op → Set for which 
FJop : Eop

f → Set is a K-nerve, i.e., finite-limit-preserving; these are the more gen-
eral models of [22, Definition 12], and the correspondence between the two notions 
in Proposition 25 recaptures Proposition 15 of [22].
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On the monad side, since K : Ef → E exhibits E as the free filtered-colimit com-
pletion of Ef , Example 41 and Theorem 43 imply that Ef is a saturated class, and 
that the Ef -nervous monads are the finitary ones. So in this case, Theorem 19 and 
Corollary 24 reconstruct (the unenriched version of) the monad–theory correspon-
dence given in [31, Theorem 5.2].

(iii) More generally, when E is locally λ-presentable and A = Eλ is a skeleton of the full 
subcategory of λ-presentable objects, the Eλ-theories are those pretheories J : Eλ →
T which preserve λ-small colimits; the T -models are functors F : T op → Set for 
which FJop preserves λ-small limits; and the Eλ-nervous monads are those whose 
endofunctor preserves λ-filtered colimits.

(iv) When E = [Gop
1 , Set] and A = Δ0, we are in the presheaf context of Examples 34(ii). 

For the density presentation for I given there, Theorem 36 tells us that a pretheory 
J : Δ0 → T is a Δ0-theory just when it preserves each of the wide pushouts [n] ∼=
[1] +[0] [1] +[0] . . .+[0] [1]. Moreover, a functor X : T op → Set is a T -model just when 
it sends each of these wide pushouts to a limit in Set. This is precisely the Segal 
condition of [33]; in elementary terms, it requires the invertibility of each canonical 
map

Xn −→ X1 ×X0 X1 ×X0 · · · ×X0 X1 . (6.3)

In Corollary 49 below we will see that Δ0 is not a saturated class of arities, 
and so we have no more direct characterisations of the Δ0-nervous monads than 
is given by Corollary 21 or Theorem 38. However, Example 11 provides us with 
natural examples of Δ0-nervous monads: namely, the monads T and Tg for cate-
gories and for groupoids on [Gop

1 , Set]. As was already noted in [35], the nervosity 
of T recaptures the classical nerve theorem relating categories and simplicial sets. 
Indeed, the Δ0-theory associated to T is the first part of the (bijective-on-objects, 
fully faithful) factorisation

Δ0
JT−−→ Δ KT−−−→ Cat

of the composite FTK : Δ0 → Cat. The interposing object here is the topologist’s 
simplex category Δ, with KT the standard inclusion into Cat. Thus, to say that T
is Δ0-nervous is to say that:

(a) The classical nerve functor NKT : Cat → [Δop, Set] is fully faithful;
(b) The essential image of NKT comprises those X ∈ [Δop, Set] for which XJT is 

a K-nerve.

This much is already done in [35], but our use of density presentations allows 
for a small improvement. To say that XJT is a K-nerve in (b) is equally to say 
that X is a T -model, or equally that X satisfies the Segal condition expressed by 
the invertibility of each (6.3). This is a mild sharpening of [35], where the “Segal 
condition” is left in the abstract form given in (b) above.
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In a similar way, the nervosity of the monad Tg for small groupoids captures 
the “symmetric nerve theorem”. This states that the functor Gpd → [Fop

+ , Set]
sending a groupoid to its symmetric nerve—indexed by the category of non-empty 
finite sets—is fully faithful, and characterises the essential image once again as the 
functors satisfying the Segal condition (6.3).

(v) With E = [Gop, Set] and A = Θ0, we are now in the presheaf context

G
I Θ0

K [Gop, Set] .

I has a density presentation given by the I-globular sums

(n1, . . . , nk) ∼= (n1) +(n2) +(n3) + . . . +(nk−1) (nk)

in Θ0; whence by Theorem 36, a pretheory J : Θ0 → T is a Θ0-theory when it 
preserves these I-globular sums—that is, when it is a globular theory in the sense 
of [8].2 A functor F : T op → Set is a T -model when it sends I-globular sums to 
limits, thus when each map

X�n −→ Xn1 ×Xn2 Xn3 ×Xn4 . . .×Xnk−1 Xnk

is invertible. Once again, Θ0 is not a saturated class of arities, and so there is no 
direct characterisation of the Θ0-nervous monads; however, their interaction with 
Θ0-theories is important in the literature on globular approaches to higher category 
theory, as we now outline.

Globular theories can describe structures on globular sets such as strict or weak 
ω-categories and ω-groupoids. For the strict variants, we pointed out in Section 3.2
that these may be modelled by Θ0-pretheories; and since reflecting a pretheory T
into a theory ΦΨT does not change the models, it is immediate that there are 
Θ0-theories modelling these structures too.

The original definition of globular weak ω-category was given by Batanin in [7]; 
he defines them be globular sets equipped with algebraic structure controlled by a 
globular operad. Globular operads can be understood as certain cartesian monads 
on globular sets. Berger [8] introduced globular theories and described the passage 
from a globular operad T to a globular theory ΘT just as in Section 2.4 above. 
In our language, his Theorem 1.17 states exactly that each globular operad T is 
Θ0-nervous, so that algebras for the globular operad are the same as models of the 
associated theory ΘT . In particular, Batanin’s weak ω-categories are the models of 
a globular theory.3 On the other hand, Grothendieck weak ω-groupoids [27] are, by 
definition, models for certain globular theories called coherators.

2 The definition of globular theory in [8] has the extra condition, satisfied in most cases, that J be a 
faithful functor.
3 As an aside, we note that a complete understanding of those globular theories corresponding to globular 

operads was obtained in Theorem 6.6.8 of [2]. See also Section 3.12 of [9].
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(

We now proceed to our examples over a more general base for enrichment V.

(vi) With V = E a locally finitely presentable symmetric monoidal category and with 
A = Vf , we are in the presheaf context

I I Vf
K V ,

wherein I has a density presentation given by the class of all finite tensors—tensors 
by finitely presentable objects of V. Thus by Theorem 36, the Vf -theories are the 
pretheories J : Vf → T which preserve finite tensors, which are precisely the Law-
vere V-theories of [32, Definition 3.1]. Furthermore, like in (i), a functor F : T op → V
is a T -model just when it preserves finite cotensors, just as in Definition 3.2 of [32]. 
On the other hand, Vf → V exhibits V as the free filtered-colimit completion of 
Vf ; whence by Example 41 it is a saturated class of arities, and by Theorem 43 the 
Vf -nervous monads are again the finitary ones. So Theorems 19 and 26 specialise 
to Theorems 4.3, 3.4 and 4.2 of [32].

(vii) Now taking E to be any locally finitely presentable V-category and A = Ef , we may 
argue as in (ii) to recapture the fully general enriched monad–theory correspondence 
of [31], and its interaction with semantics.

viii) Now suppose we are in the situation of Examples 8(viii), provided with a class Φ
of enriched colimit-types satisfying Axiom A of [23]. With E = V and A = VΦ, we 
are now in the presheaf context

I I VΦ
K V .

By [17, Theorem 5.35], I has a density presentation given by Φ-tensors (i.e., ten-
sors by objects in Φ) while by [23, Theorem 3.1], K exhibits V as the free Φ-flat 
cocompletion of VΦ. Arguing as in the preceding parts, we see that VΦ-theories are 
pretheories J : Vop

Φ → T which preserve Φ-tensors, that T -models are Φ-tensor-
preserving functors F : T op → V, and that a monad is VΦ-nervous if its underlying 
endofunctor preserves Φ-flat colimits. This sharpens slightly the results obtained 
in [23] in the special case E = V.

(ix) Finally, in the situation of Examples 8(ix), we find that the A-theories are the 
Φ-colimit preserving pretheories J : A → T ; that the T -models are functors 
F : T op → V such that FJop preserves Φ-limits; and that a monad is A-nervous just 
when it preserves Φ-flat colimits. In this way, our Theorems 19 and 26 reconstruct 
Theorems 7.6 and 7.7 of [23].

7. Monads with arities and theories with arities

In the introduction, we mentioned the general framework for monad–theory corre-
spondences obtained in [35,9]. Similar to this paper, the basic setting involves a category 
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E and a small, dense subcategory K : A ↪→ E ; given these data, one defines notions of 
monad with arities A and theory with arities A, and proves an equivalence between the 
two that is compatible with semantics.

In this section, we compare this framework with ours by comparing the classes of 
monads and of theories. We will see that our setting yields strictly larger classes of 
monads and theories which are better-behaved in practically useful ways. On the other 
hand, in the more restrictive setting of [35,9], checking that a monad or theory is in 
the required class may give greater combinatorial insight into the structure which it 
describes.

7.1. Monads with arities versus nervous monads

In [35,9] the authors work in the unenriched setting; the introduction to [9] states 
that the results “should be applicable” also in the enriched one. To ease the comparison 
to our results, we take it for granted that this is true, and transcribe their framework 
into the enriched context without further comment.

Another difference is that we assume local presentability of E while [35] assumes only 
cocompleteness, and [9] not even that. Given a small dense subcategory, there is no 
readily discernible difference between cocompleteness and local presentability4; however, 
cocompleteness is substantively different from nothing, so that in this respect [9]’s results 
are more general than ours. However all known applications are in the context of a locally 
presentable E , and so we do not lose much in restricting to this context. In conclusion, 
when we make our comparison we will work in exactly the same general setting as in 
Section 2.1, and now have:

Definition 45. [35, Definition 4.1] An endofunctor T : E → E is said to have arities A
if the composite V-functor NKT : E → [Aop, V] is the left Kan extension of its own 
restriction along K. A monad T ∈ Mnd(E) is a monad with arities A if its underlying 
endofunctor has arities A.

We consider the following way of restating this to be illuminating.

Proposition 46. An endofunctor T : E → E has arities A if and only if it sends 
K-absolute colimits to K-absolute colimits. In particular, each endofunctor with arities 
A is A-induced.

Proof. By Proposition 35, T has arities A just when NKT sends K-absolute colimits 
to colimits. Since NK is fully faithful, it reflects colimits, and so T has arities A just 
when T sends K-absolute colimits to colimits which are preserved by NK—that is, to 
K-absolute colimits.

4 Indeed, if there were, then it would negate the large cardinal axiom known as Vopěnka’s principle [1, 
Chapter 6].
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For the second claim, recall from Definition 39 that an endofunctor T : E → E is 
A-induced if it is the left Kan extension of its own restriction to A, or equivalently, by 
Proposition 35, when it sends K-absolute colimits to colimits. �

Recall also that we call a class of arities A saturated when A-induced endofunctors are 
closed under composition. Example 42 shows that this condition is not always satisfied. 
In light of the preceding result, the endofunctors with arities A can be seen as a natural 
subclass of the A-induced endofunctors for which composition-closure is always verified.

The reason that Weber introduced monads with arities was in order to prove his nerve 
theorem [35, Theorem 4.10], which in our language may be restated as:

Theorem 47. Monads with arities A are A-nervous.

One may reasonably ask whether the classes of monads with arities and A-nervous 
monads in fact coincide. In many cases, this is true; in particular, in the situation of 
Example 41, where K : A → E exhibits E as the free Φ-cocompletion of A for some class 
of colimit-types Φ. Indeed, this condition implies that a monad T is A-nervous precisely 
when T sends Φ-colimits to Φ-colimits; since Φ-colimits are K-absolute, this in turn 
implies that NKT sends Φ-colimits to colimits, and so is the left Kan extension of its 
own restriction along K. So in this case, every A-nervous monad has arities A; so in 
particular, the two notions coincide in each of Examples 8(i), (ii), (iii), (vi), (vii), (viii)
and (ix).

However, they do not coincide in general. That is, in some instances of our basic 
setting, there exist monads which are A-nervous but do not have arities A. We give 
three examples of this. The first two arise in the setting of Example 8(iv), and concern 
the monads for groupoids and involutive graphs respectively.

Proposition 48. The monad T on Grph := [Gop
1 , Set] whose algebras are groupoids is 

Δ0-nervous but does not have Δ0-induced underlying endofunctor. It follows that T does 
not have arities Δ0.

Proof. From Example 11 we know that T is Δ0-nervous. To see that T is not Δ0-induced, 
consider the graph X with vertices and arrows as to the left in:

a
r−→ b

s←− c

[0] τ

τ

[1]
s

[1] r
X .

(7.1)

This X is equally the K-absolute pushout right above; so if T were Δ0-induced then it 
would preserve this pushout. But T [1] +T [0] T [1] is the graph
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a1a

r
b

r−1

s

1b

c
s−1

1c

wherein, in particular, there is no edge a → c; while in TX we have s−1◦r : a → c. So the 
pushout is not preserved. This shows that T is not Δ0-induced and so, by Proposition 46, 
that T does not have arities Δ0. �

Since the above result exhibits a Δ0-nervous monad whose underlying endofunctor is 
not Δ0-induced, we can apply Theorem 43 to deduce:

Corollary 49. K : Δ0 ↪→ Grph is not a saturated class of arities.

Our second example, originally due to Melliès [29, Appendix III], shows that even 
monads with Δ0-induced endofunctor need not have arities Δ0. In this example, we call 
a graph s, t : X1 ⇒ X0 involutive if it comes endowed with an order-2 automorphism 
i : X1 → X1 reversing source and target, i.e., with si = t (and hence also ti = s).

Proposition 50. The monad T on Grph := [Gop
1 , Set] whose algebras are involutive graphs 

is Δ0-nervous and has Δ0-induced underlying endofunctor, but does not have arities Δ0.

Proof. The value of T at s, t : X1 ⇒ X0 is given by 〈s, t〉, 〈t, s〉 : X1 + X1 ⇒ X0. It 
follows that T is cocontinuous and so certainly Δ0-induced. To see it does not have 
arities Δ0, consider again the graph (7.1) and its K-absolute pushout presentation. If 
this were preserved by NKT : Grph → [Δop

0 , Set] then, on evaluating at [2], the maps 
Grph([2], T [1]) ⇒ Grph([2], TX) given by postcomposition with Tr and Ts would be 
jointly surjective. To show this is not so, consider the map f : [2] → TX picking out 
the composable pair (r : a → b, i(s) : b → c). Since neither Tr nor Ts are surjective on 
objects, the bijective-on-objects f cannot factor through either of them. This shows that 
T does not have arities Δ0. �

Our final example shows that not even free monads on A-signatures—which are 
A-nervous by Theorem 38 above—need necessarily have arities A.

Proposition 51. Let V = E = Set and let A be the one-object full subcategory on a 
two-element set. The free monad on the terminal A-signature does not have A-induced 
underlying endofunctor and therefore does not have arities A.

Proof. The algebras for the free monad T on the terminal signature are sets equipped 
with a binary operation. Elements of the free T-algebra on X are binary trees with leaves 
labelled by elements of X, yielding the formula

TX =
∑

n∈N Cn ×Xn+1
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where Cn is the nth Catalan number. In particular, T contains at least one coproduct 
summand (–)4 and so, as in Example 42, is not A-induced; in particular, by Proposi-
tion 46, it does not have arities A. �
7.2. Theories with arities A versus A-theories

The paper [9] introduced theories with arities A. These are A-pretheories J : A → T
for which the composite

[Aop,V] LanJ−−−−→ [T op,V] [Jop,1]−−−−−→ [Aop,V] (7.2)

takes K-nerves to K-nerves. This functor takes the representable A(–, x) to T (J–, x), so 
that in this language, we may describe the A-theories as the pretheories for which (7.2)
takes each representable to a K-nerve. It follows that:

Proposition 52. Theories with arities A are A-theories.

Proof. It suffices to observe that each representable A(–, x) is a K-nerve since A(–, x) ∼=
E(K–, Kx) = NK(Kx). �

Theorem 3.4 of [9] establishes an equivalence between the categories of monads with 
arities A and of theories with arities A. The functor taking a monad with arities to the 
corresponding theory with arities is defined in the same way as the Φ of Section 2.4, and 
so it follows that:

Proposition 53. The equivalence of monads with arities A and theories with arities A is 
a restriction of the equivalence between A-nervous monads and A-theories.

In particular, there exist A-theories which are not theories with arities A; it is this 
statement which was verified in [29, Appendix III].

7.3. Colimits of monads with arities

In Theorem 38 we saw that the A-nervous monads are the closure of the free monads 
on A-signatures under colimits in Mnd(E). Since colimits of monads are algebraic, this 
allows us to give intuitive presentations for A-nervous monads as suitable colimits of 
frees. The pretheory presentations of Section 3 can be understood as particularly direct 
descriptions of such colimits.

Since not every A-nervous monad has arities A, the monads with arities are not the 
colimit-closure of the frees on signatures. We already saw one explanation for this in 
Proposition 51: the free monads on signatures need not have arities. However, this leaves 
open the possibility that the monads with arities A are the colimit-closure of some smaller 
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class of basic monads—which would allow for the same kind of intuitive presentation as 
we have for A-nervous monads. The following result shows that even this is not the case.

Theorem 54. Monads with arities A need not be closed in Mnd(E) under colimits.

Proof. We saw in Proposition 50 that, when E = Grph and A = Δ0, the monad T for 
involutive graphs does not have arities Δ0. To prove the result it will therefore suffice 
to exhibit T as a colimit in Mnd(Grph) of a diagram of monads with arities Δ0. This 
diagram will be a coequaliser involving a pair of monads P and Q, whose respective 
algebras are:

• For P: graphs X endowed with a function u : X1 → X0;
• For Q: graphs X endowed with an order-2 automorphism i : X1 → X1.

We construct this coequaliser of monads in terms of the categories of algebras. The 
category GrphT of involutive graphs is an equaliser in CAT as to the left in:

GrphT E
GrphQ

F

G

GrphP P
ϕ

γ
Q ε T

where the functors F and G send a Q-algebra (X, i) to the respective P-algebras 
(X, si) and (X, t). Since each of these functors commutes with the forgetful functors 
to Grph, we have an equaliser of forgetful functors in CAT/Grph. Since the functor 
Alg : Mnd(Grph)op → CAT/Grph is fully faithful, this equaliser must be the image of a 
coequaliser diagram in Mnd(Grph) as right above.

It remains to show that in this coequaliser presentation both P and Q have arities Δ0. 
By Proposition 35, this means showing that NKP and NKQ send K-absolute colimits 
to colimits, or equally, that each Grph([n], P–) and Grph([n], Q–) sends K-absolute 
colimits to colimits. To see this, we calculate P and Q explicitly. On the one hand, the 
free P-algebra on a graph X is obtained by freely adjoining an element u(f) to X0 for 
each f ∈ X1. On the other hand, the free Q-algebra on X is obtained by freely adjoining 
an element i(f) ∈ X1 for each f ∈ X1. Thus we have

PX = X + X1 · [0] and QX = X + X1 · [1]

where we use · to denote copower. Since each [n] ∈ Grph is connected, and since each 
hom-set Gph([n], [m]) has cardinality max(0, m − n + 1), we conclude that
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Grph([n], PX) =
{
Grph([0], X) + Grph([1], X) if n = 0;
Grph([n], X) if n > 0.

Grph([n], QX) =

⎧⎪⎪⎨
⎪⎪⎩
Grph([0], X) + 2 ·Grph([1], X) if n = 0;
Grph([1], X) + Grph([1], X) if n = 1;
Grph([n], X) if n > 1.

(7.3)

Now by definition, NK sends K-absolute colimits to colimits, whence also each 
Grph([n], –) : Grph → Set. The functors with this property are closed under colimits 
in [Grph, Set], and so (7.3) ensures that each Grph([n], P–) and Grph([n], Q–) sends 
K-absolute colimits to colimits as desired. �

It is not even clear to us if the category of monads with arities A is always cocomplete. 
The argument for local presentability of MndA(E) in Theorem 38 does not seem to adapt 
to the case of monads with arities, and no other obvious argument presents itself. In any 
case, the preceding result shows that, even if the category of monads with arities does 
have colimits, they do not always coincide with the usual colimits of monads, and, in 
particular, are not always algebraic. This dashes any hope we might have had of giving 
a sensible notion of presentation for monads with arities.

8. Deferred proofs

8.1. Identifying the monads

In this section, we complete the proofs of the results deferred from Section 6 above, 
beginning with Theorem 38. Recall that the category SigA(E) of signatures is the (ordi-
nary) category V-CAT(obA, E), and that V : Mnd(E) → SigA(E) is the functor sending 
T to (Ta)a∈A.

Proposition 55. V : Mnd(E) → SigA(E) has a left adjoint F which takes values in 
A-nervous monads.

Proof. We can decompose V as the composite

Mnd(E) V1−−→ V-CAT(E , E) V2−−→ SigA(E)

where V1 takes the underlying endofunctor, and V2 is given by evaluation at each a ∈
obA. Since V2 is equally given by restriction along obA → A → E , it has a left adjoint 
F2 given by pointwise left Kan extension, with the explicit formula:

F2(Σ) =
∑

a∈A E(Ka, –) · Σa : E → E ,

where · denotes V-enriched copower. So it suffices to show that the free monad on each 
endofunctor F2(Σ) exists and is A-nervous. By [16, Theorem 23.2], such a free monad 
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T is characterised by the property that EF2(Σ) ∼= ET over E , where on the left we have 
the V-category of algebras for the mere endofunctor F2(Σ). Thus, to complete the proof, 
it suffices by Theorem 6 to exhibit EF2(Σ) as isomorphic to the V-category of concrete 
models of some A-pretheory.

To this end, we let B be the collage of the V-functor NKΣ: obA → [Aop, V]. Thus B
is the V-category with object set obA + obA and the following hom-objects, where we 
write �, r : obA → obB for the two injections:

B(�a′, �a) = A(a′, a) B(ra′, ra) = (obA)(a′, a)

B(�a′, ra) = E(Ka′,Σa) B(ra′, �a) = 0 .

Let � : A → B and r : obA → B be the two injections into the collage, and now form 
the pushout J : A → T of 〈�, r〉 : A + obA → B along 〈1, ι〉 : A + obA → A. Since 〈�, r〉
is identity-on-objects, so is J : A → T , and so we have an A-pretheory. To conclude the 
proof, it now suffices to show that EF2(Σ) ∼= Modc(T ) over E .

By the universal property of the collage and the pushout, to give a functor H : T → X
is equally to give a functor F = HJ : A → X together with V-natural transformations 
αa : E(K–, Σa) ⇒ X (F–, Fa) for each a ∈ obA. In particular, taking X = Vop and 
F = E(K–, X), we see that a concrete T -model structure on X ∈ E is given by an 
obA-indexed family of V-natural transformations

αa : E(K–,Σa) ⇒ [E(Ka,X), E(K–, X)]

or equally under transpose, by a family of maps

E(Ka,X) → [Aop,V](E(K–,Σa), E(K–, X)) .

By full fidelity of NK , the right-hand side above is isomorphic to E(Σa, X), and so 
concrete T -model structure on X is equally given by a family of maps E(Ka, X) →
E(Σa, X). Finally, using the universal properties of copowers and coproducts, this is 
equivalent to giving a single map

ᾱ :
∑

a∈A E(Ka,X) · Σa → X

exhibiting X as an F2(Σ)-algebra. We thus have a bijection over E between objects of 
EF2(Σ) and objects of Modc(T ).

A similar analysis shows that a morphism A → E(X, Y ) in V lifts through the 
monomorphism Modc(T )((X, α), (Y, β)) → E(X, Y ) if and only if it lifts through the 
monomorphism EF2(Σ)((X, ᾱ), (Y, β̄)) → E(X, Y ). It follows that we have an isomor-
phism of V-categories EF2(Σ) ∼= Modc(T ) over E as desired. �

In proving the rest of Theorem 38, the following lemma will be useful.
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Lemma 56. Let C1 ⊆ C2 be replete, full, colimit-closed sub-V-categories of C; for example, 
they could be coreflective. If V : C → D has a left adjoint F taking values in C1, and the 
restriction V |C2

: C2 → D is monadic, then C1 = C2.

Proof. Since F takes values in C1 ⊆ C2, the left adjoint to V |C2
: C1 → D is still given 

by F . So monadicity of V |C2
means that each X ∈ C2 can be written as a coequaliser in 

C2, and hence also in C, of objects in the image of F . Since imF ⊆ C1 and since C1 is 
closed in C under colimits, it follows that X ∈ C1. �
Theorem 38. V : Mnd(E) → SigA(E) has a left adjoint F : SigA(E) → Mnd(E) taking 
values in A-nervous monads. Moreover:

(i) The restricted functor V : MndA(E) → SigA(E) is monadic;
(ii) A monad T ∈ Mnd(E) is A-nervous if and only if it is a colimit in Mnd(E) of 

monads in the image of F ;
(iii) Each of MndA(E), PrethA(E) and ThA(E) is locally presentable.

Proof. We begin with (i). Let H : PrethA(E) → V-CAT(obA, [Aop, V]) be the functor 
sending a pretheory J : A → T to the family of presheaves (T (J−, Ja))a∈A. Since an 
A-pretheory is a theory just when each of these presheaves is a K-nerve, we have a 
pullback square as to the right in:

MndA(E) Φ

V ∼=

ThA(E)

P

PrethA(E)

H

V-CAT(obA, E)
NK◦(–)

V-CAT(obA,K-Ner) V-CAT(obA, [Aop,V]) .

(8.1)

Since K-Ner ↪→ [Aop, V] is replete, this square is a pullback along a discrete isofibration, 
and so by [14, Corollary 1] also a bipullback. On the other hand, to the left, we have a 
pseudocommuting square as witnessed by the isomorphisms:

(PJT)(A) = AT(JT–, JTA) = ET(FTK–, FTKA) ∼= E(K–, TKA) = NK(TKA) .

Since both horizontal edges of this square are equivalences, it is also a bipullback.
To show the required monadicity, we must prove that V creates V -absolute coequalis-

ers. Since the large rectangle is a bipullback—as the pasting of two bipullbacks—it suffices 
to show that H creates H-absolute coequalisers. As the definition of H depends only on 
A and not E , we lose no generality in proving this if we assume that E = [Aop, V] and 
K = Y . In this case, every presheaf on A is a K-nerve, and so the horizontal composites 
in (8.1) are equivalences; and so, finally, it suffices to prove that V is monadic when 
E = [Aop, V] and K = Y .

Note that, in this case, A is a saturated class of arities: for indeed, by the universal 
property of free cocompletion, a functor F : [Aop, V] → [Aop, V] is A-induced if and 
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only if it is cocontinuous. It thus follows from Proposition 58 below that the restriction 
Vc : Mndc(E) → SigA(E) of V to cocontinuous monads is monadic; so we will be done 
if Mndc(E) = MndA(E). In this case, Ψ: PrethA(E) → MndA(E) sends J : A → T to a 
monad isomorphic to that induced by the adjunction LanJ : [Aop, V] � [T op, V] : [Jop, 1], 
and so MndA(E) ⊆ Mndc(E). To obtain equality, we apply Lemma 56. We have that:

• MndA(E) and Mndc(E) are coreflective in Mnd(E) by Corollary 22 and Lemma 57
respectively;

• V : Mnd(E) → SigA(E) has a left adjoint taking values in MndA(E);
• The restriction Vc : Mndc(E) → SigA(E) is monadic;

and so MndA(E) = Mndc(E). This proves monadicity of V in the special case E =
[Aop, V], whence also, by the preceding argument, in the general case.

In order to prove (ii), we let C1 be the colimit-closure in Mnd(E) of the image of F . 
Since MndA(E) contains this image and is colimit-closed, we have C1 ⊆ MndA(E) ⊆
Mnd(E). Thus, applying Lemma 56 to this triple and V : MndA(E) → SigA(E) gives 
MndA(E) = C1 as desired.

Finally we prove (iii). The monadicity of V above implies that of P and hence also 
of H (by taking E = [Aop, V]). Since filtered colimits of A-pretheories can be com-
puted at the level of underlying graphs, the forgetful H preserves them; which is to say 
that PrethA(E) is finitarily monadic over the locally presentable V-CAT(obA, [Aop, V]), 
whence locally presentable by [13, Satz 10.3]. So in the right-hand and the large bip-
ullback squares in (8.1), the bottom and right sides are right adjoints between locally 
presentable categories. Since by [10, Theorem 2.18], the 2-category of locally presentable 
categories and right adjoint functors is closed under bilimits in CAT, we conclude that 
each ThA(E) and each MndA(E) is also locally presentable. �
8.2. Saturated classes

We now turn to the deferred proof of Theorem 43. Recall the context: an endo-V-functor
F : E → E is called A-induced when the pointwise left Kan extension of its restric-
tion along K, and A is a saturated class of arities if A-induced endofunctors of E are 
composition-closed.

We begin by recording the basic properties of this situation. We write A-End(E)
and A-Mnd(E) for the full subcategories of End(E) = V-CAT(E , E) and Mnd(E) on, 
respectively, the A-induced endofunctors, and the monads with A-induced underlying 
endofunctor.

Lemma 57. A-End(E) is coreflective in End(E) = V-CAT(E , E) via the coreflector 
R(F ) = LanK(FK), as on the left in:

A-End(E)
I

	 End(E)
R

A-Mnd(E)
I

	 Mnd(E) .
R

(8.2)
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If A is a saturated class, then A-End(E) is right-closed monoidal, and the coreflection 
left above lifts to the corresponding categories of monads as on the right.

Proof. Restriction and left Kan extension along the fully faithful K exhibits A-End(E)
as equivalent to V-CAT(A, E), whence locally presentable. Since restriction along K
is a coreflector of End(E) into V-CAT(A, E), it follows that R(F ) = LanK(FK) is a 
coreflector of End(E) into A-End(E).

If A is saturated then A-End(E) is monoidal under composition. Since each endofunc-
tor (–) ◦F of End(E) is cocontinuous, and A-End(E) is closed in End(E) under colimits, 
each endofunctor (–) ◦F of A-End(E) is cocontinuous, and so has a right adjoint by local 
presentability. Thus A-End(E) is right-closed monoidal.

Furthermore, the inclusion of A-End(E) into End(E) is strict monoidal, whence by [15, 
Theorem 1.5] the coreflection to the left of (8.2) lifts to a coreflection in the 2-category 
MONCAT of monoidal categories, lax monoidal functors and monoidal transformations. 
Applying the 2-functor MONCAT(1, –) : MONCAT → CAT yields the coreflection to the 
right of (8.2). �

The key step towards establishing Theorem 43 above is now:

Proposition 58. The left adjoint F of V : Mnd(E) → SigA(E) takes values in A-induced 
monads; furthermore, the restriction of V to A-Mnd(E) is monadic.

Proof. For any T ∈ Mnd(E), its A-induced coreflection εT : IR(T) → T has as underlying 
map in End(E) the component LanK(TK) → T of the counit of the adjunction given by 
restriction and left Kan extension along K. Since K is fully faithful, the restriction of this 
map along K is invertible, whence in particular, V ε : V IR ⇒ V : Mnd(E) → SigA(E) is 
invertible. So η : id ⇒ V F factors through V εF : V IRF ⇒ V F whence, by adjointness, 
id : F ⇒ F factors through εF . Therefore each F (Σ) is a retract of IRF (Σ); since 
A-Mnd(E) is closed under colimits in Mnd(E), it is retract-closed and so each F (Σ)
belongs to A-Mnd(E).

It remains to prove that the restriction of V to A-Mnd(E) is monadic. To do so, we 
decompose this restriction as

A-Mnd(E) V1−−→ A-End(E) V2−−→ SigA(E) ,

where V1 forgets the monad structure and V2 is given by precomposition with the functor 
obA → A → E , and apply the following result, which is [21, Theorem 2]:

Theorem. Let M be a right-closed monoidal category, and V2 : M → N a monadic 
functor for which there exists a functor � : M × N → N with natural isomorphisms 
X �V Y ∼= V (X⊗Y ). If the forgetful functor V1 : Mon(M) → M has a left adjoint, then 
the composite V2V1 : Mon(M) → N is monadic.
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Indeed, by Lemma 57, A-End(E) is a right-closed monoidal category, and A-Mnd(E)
the category of monoids therein. Under the equivalence A-End(E) � V-CAT(A, E), we 
may identify V2 with precomposition along obA → A. It is thus cocontinuous, and has 
a left adjoint given by left Kan extension; whence is monadic. Now since V2V1 has a left 
adjoint and V2 is monadic, it follows that V1 also has a left adjoint. Finally, we have a 
functor

� : A-End(E) × SigA(E) → SigA(E)

defined by (F, G) 	→ FG, and this clearly has the property that M(FG) = F �M(G). 
So applying the above theorem yields the desired monadicity. �

We are now ready to prove:

Theorem 43. Let A be a saturated class of arities in E. The following are equivalent 
properties of a monad T ∈ Mnd(E):

(i) T is A-nervous;
(ii) T : E → E is A-induced;
(iii) T : E → E preserves Φ-colimits for any density presentation Φ of K.

Proof. For (i) ⇔ (ii), the monadicity of V : A-Mnd(E) → SigA(E) verified in the previous 
proposition implies, as in the proof of Theorem 38(iii), that A-Mnd(E) is the colimit-
closure in Mnd(E) of the free monads on signatures. Since MndA(E) is also this closure, 
we have MndA(E) = A-Mnd(E) as desired. For (ii) ⇔ (iii), we apply Proposition 35. �
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