
Annals of Pure and Applied Logic 160 (2009) 1–12

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

journal homepage: www.elsevier.com/locate/apal

On the strength of dependent products in the type theory of Martin-Löf
Richard Garner
Department of Mathematics, Uppsala University, Box 480, S-751 06 Uppsala, Sweden

a r t i c l e i n f o

Article history:
Received 31 March 2008
Received in revised form 1 October 2008
Accepted 2 December 2008
Available online 1 February 2009
Communicated by I. Moerdijk

MSC:
primary 03B15

Keywords:
Dependent type theory
Dependent products
Function extensionality

a b s t r a c t

One may formulate the dependent product types of Martin-Löf type theory either in terms
of abstraction and application operators like those for the lambda-calculus; or in terms of
introduction and elimination rules like those for the other constructors of type theory. It is
known that the latter rules are at least as strong as the former:we show that they are in fact
strictly stronger. We also show, in the presence of the identity types, that the elimination
rule for dependent products – which is a ‘‘higher-order’’ inference rule in the sense of
Schroeder-Heister – can be reformulated in a first-order manner. Finally, we consider
the principle of function extensionality in type theory, which asserts that two elements
of a dependent product type which are pointwise propositionally equal, are themselves
propositionally equal. We demonstrate that the usual formulation of this principle fails
to verify a number of very natural propositional equalities; and suggest an alternative
formulation which rectifies this deficiency.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This is the first in a series of papers recording the author’s investigations into the semantics of Martin-Löf’s dependent
type theory; by which we mean the type theory set out in the expository volume [9]. The main body of these investigations
concerns what the author is calling two-dimensionalmodels of dependent type theory. Recall that one typically divides the
models ofMartin-Löf’s type theory into extensional and intensionalones, the former differentiating themselves from the latter
by their admission of an equality reflection rule which collapses the propositional and definitional equalities of the language
into a single, judgemental, equality. The two-dimensional models that the author is studying are of the intensional kind, but
are not wholly intensional: they admit instances of the equality reflection rule at just those types which are themselves
identity types.
In the process ofmakinghis investigations, the author has discovered certain unresolved issues concerning the dependent

product types of Martin-Löf type theory; and since these issues exist beyond the domain of two-dimensional models, it
seemed worthwhile to collect his conclusions into this preliminary paper.
The first of these issues concerns how we formulate the rules for the dependent product types. There are two accepted

ways of doing this. In both cases, we begin with a formation rule which, given a type A and a type B(x) dependent on x : A,
asserts the existence of a type 5(A, B); and an abstraction rule which says that, from an element f (x) : B(x) dependent
on x : A, we may deduce the existence of an element λ(f) : 5(A, B). We may then complement these rules with either an
application rule, which tells us that, fromm : 5(A, B) and a : A, we may infer an element app(m, x) : B(x); or an elimination
rule, which essentially tells us that any (dependent) function out of5(A, B) is determined, up-to-propositional-equality, by
its values on those elements of the form λ(f) for some dependent element x : A ` f (x) : B(x).
There are two problematic features here. The first concerns the nature of the elimination rule, which is a higher-order

inference rule in the sense of Schroeder-Heister [10]. In order to formulate this rule rigorously, we must situate our type

E-mail address: rhgg2@cam.ac.uk.

0168-0072/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2008.12.003

http://www.elsevier.com/locate/apal
http://www.elsevier.com/locate/apal
mailto:rhgg2@cam.ac.uk
http://dx.doi.org/10.1016/j.apal.2008.12.003

2 R. Garner / Annals of Pure and Applied Logic 160 (2009) 1–12

theorywithin an ambient calculus possessing higher-order features; a suitable choice being the Logical Framework described
in Part III of [9], and recalled in Section 2 below. Yet it may be that we do not wish to do this: one reason being that the
categorical semantics of Martin-Löf type theory looks rather different when it is formulated within the Logical Framework.
Hence our first task in this paper is to give a first-order reformulation of the elimination rule in terms of the application rule
and a propositional form of the η-rule; a reformulation that may be stated without recourse to the Logical Framework.
The second problematic feature concerns the precise relationship between the application and elimination rules for

dependent products. We know that the application rule may be defined in terms of the elimination rule, so that the
elimination rule is stronger; yet it is not known whether it is strictly stronger. Our second task is to show that this is in
fact the case; we do this by describing a non-standard interpretation of the5-types for which the application rule obtains,
yet not the elimination rule.
We then move on to another issue, namely the formulation of the principle of function extensionality in Martin-Löf type

theory. This principle asserts that if m and n are elements of 5(A, B) and we can affirm a propositional equality between
app(m, x) and app(n, x)whenever x : A, thenwemay deduce the existence of a propositional equality betweenm and n. One
result of the author’s investigations into two-dimensional models has been that, if we are to obtain a notion of model which
is reasonably urbane from a category-theoretic perspective, then wemust impose some kind of function extensionality. Yet
the principle of function extensionality just stated has been found wanting in this regard, since it fails to provide witnesses
for a number of very natural propositional equalities which are demanded by the semantics; some of which are detailed in
Examples 5.6 below. Froma category-theoretic perspective,wemight say that the principle of function extensionality fails to
be coherent. Our third task in this paper, therefore, is to propose a suitably coherent replacement for function extensionality.

2. Martin-Löf type theory

2.1 We begin with a brief summary of the two principal ways in which onemay present Martin-Löf type theory. The more
straightforward is the ‘‘polymorphic’’ presentation of [7,8]. This is given by a reasoning system with four basic forms of
judgement:

• Γ ` A type (‘‘A is a type under the hypothesis Γ ’’);
• Γ ` a : A (‘‘a is an element of A under the hypothesis Γ ’’);
• Γ ` A = B type (‘‘A and B are equal types under the hypothesis Γ ’’);
• Γ ` a = b : A (‘‘a and b are equal elements of A under the hypothesis Γ ’’).

Here, Γ is to be a context of assumptions, Γ = (x1 : A1, x2 : A2, . . . , xn : An), subject to a requirement of well-formedness
which affirms that each Ai is a type under the assumptions (x1 : A1, . . . , xi−1 : Ai−1). The polymorphic presentation of
Martin-Löf type theory is now given by specifying a sequent calculus over these four forms of judgement: so a number of
axiom judgements, together with a number of inference rules

J1 · · · Jn

J

allowing us to derive the validity of the judgementJ from that of theJi’s. As usual, these inference rules separate into a group
of structural ruleswhich deal with the contextual book-keeping of weakening, contraction, exchange and substitution; and a
group of logical rules, which describe the constructions we wish to be able to perform inside our type theory: constructions
such as cartesian product of types, disjoint union of types, or formation of identity types.

2.2 However, the polymorphic presentation of type theory is inadequate for our purposes, because the elimination rule
for dependent products we wish to study requires the use of a second-order judgement Γ ` J, in which the context of
assumptions Γ itself contains a judgement under hypotheses. One solution to this problem is suggested by Troelstra and
van Dalen in [11, Chapter 11]: we extend our system with explicit second-order judgement forms expressing that ‘‘B is a
family of types over A under the hypothesis Γ ’’, and so on, and express the elimination rule in terms of these. A second
solution to this problem – and the one we adopt here – makes use of the ‘‘monomorphic’’ presentation of Martin-Löf type
theory. This is given in terms of the Logical Framework, which is essentially a formalisation of the meta-theory we use to
reason about the calculus of types. The basic judgements of this meta-theory look rather like those of type theory:

Γ ` A sort; Γ ` a : A; Γ ` A = B sort; and Γ ` a = b : A.

However, the meaning is somewhat different. We think of a sort of the Logical Framework as being a category of judgements
about type theory. In particular, the Logical Framework has rules

` type sort
and

A : type ` el A sort
,

which express the existence of the category of judgements ‘‘— is a type’’; and, under the assumption that ‘‘A is a type’’, of
the category of judgements ‘‘— is an element of A’’. Using these, wemay interpret more complex judgements of type theory;

R. Garner / Annals of Pure and Applied Logic 160 (2009) 1–12 3

for example, if we know that ‘‘A is a type’’, then we can interpret the judgement J that ‘‘B(x) is a type under the hypothesis
that x is an element of A’’ as

x : el A ` B(x) : type.

Yet this is not an entirely faithful rendition of J, since strictly speaking, the displayed sequent asserts the judgement ‘‘B(x)
is a type’’ under the hypothesis that ‘‘x is an element of A’’. To resolve this, we introduce the other key aspect of the Logical
Framework, namely the function sorts. These are specified by rules of formation, abstraction and application:

Γ , x : A ` B(x) sort
Γ ` (x : A) B sort

,
Γ , x : A ` b(x) : B(x)

Γ ` [x : A] b(x) : (x : A) B(x)

and
Γ ` f : (x : A) B Γ ` a : A

Γ ` f (a) : B(a)

subject to the α-, β-, η- and ξ -rules of the lambda-calculus. Using function sorts, we can now render the judgement Jmore
correctly. We have the sort (x : el A) type, which is the category of judgements ‘‘— is a type under the hypothesis that x is
an element of A’’; and can now interpret J as the judgement

` B : (x : el A) type.

2.3 We may translate the polymorphic presentation of Martin-Löf type theory into the monomorphic one by encoding
the inference rules of the former as higher-order judgements of the latter. For instance, consider the hypothetical type
constructor8with rules

A type

8(A) type
and

A type a : A
φA(a) : 8(A)

.

We may encode this in the Logical Framework by terms

`8 : (A : type) type and ` φ : (A : type, a : el A) el8(A),

where for the sake of readability we write iterated function spaces as (A : type, a : el A) el8(A) instead of the more correct
(A : type)(a : el A) el8(A). Note that this encoding says more than the original, by affirming a certain insensitivity to
ambient context; since from the constants8 and φ, we obtain a whole family of inference rules

Γ ` A type

Γ ` 8(A) type
and

Γ ` A type Γ ` a : A
Γ ` φA(a) : 8(A)

,

together with further rules expressing stability under substitution in Γ . However, this is no bad thing, since any acceptable
inference rule of the polymorphic theory will possess this ‘‘naturality’’ in the context Γ . In the remainder of this paper we
work in the monomorphic presentation of type theory, but will take advantage of the above encoding process in order to
present the rules of our type theory in the more readable polymorphic style. For more on the relationship between the
monomorphic and polymorphic presentations, see [5].

3. A first-order reformulation of the5-elimination rule

3.1 Our main concern in this paper is with the dependent product types of Martin-Löf type theory: but in this analysis,
we will from time to time make use of the identity types, which are a reflection at the type level of the equality judgements
a = b : A. We begin, therefore, by recalling the rules for the identity types:

A type a, b : A
IdA(a, b) type

Id-form;
A type a : A
r(a) : IdA(a, a)

Id-intro;

A type x, y : A, z : IdA(x, y) ` C(x, y, z) type
x : A ` d(x) : C(x, x, r(x)) a, b : A p : IdA(a, b)

J(d, a, b, p) : C(a, b, p)
Id-elim;

A type x, y : A, z : IdA(x, y) ` C(x, y, z) type
x : A ` d(x) : C(x, x, r(x)) a : A
J(d, a, a, r(a)) = d(a) : C(a, a, r(a))

Id-comp.

The notion of equality captured by the identity types is known as propositional equality: to say that a and b are
propositionally equal as elements of A is to say that we may affirm a judgement p : IdA(a, b). We think of IdA as being a

4 R. Garner / Annals of Pure and Applied Logic 160 (2009) 1–12

type inductively generated by the elements r(a) : IdA(a, a), with the elimination rule and computation rules expressing
that any dependent function out of IdA is determined up-to-propositional-equality by its value on elements of the form r(a).

3.2 We are now ready to describe the two standard formulations of dependent product types in Martin-Löf type theory.
The first, which we will refer to as the app-formulation, is analogous to the lambda-calculus with the β-rule but no η-rule:

A type x : A ` B(x) type
5(A, B) type

5-form;
x : A ` f (x) : B(x)
λ(f) : 5(A, B)

5-abs;

m : 5(A, B) a : A
app(m, a) : B(a)

5-app;
x : A ` f (x) : B(x) a : A
app(λ(f), a) = f (a) : B(a)

5-β .

Note that, for the sake of readability we omit the hypotheses A type and x : A ` B(x) type from the last three of these rules;
and in future, we may omit any such hypotheses that are reconstructible from the context. To further reduce syntactic
clutter, we may also write5x : A. B(x) instead of5(A, [x : A] B(x)); write λx. f (x) instead of λ([x : A] f (x)); and writem · a
instead of app(m, a).

3.3 Aswe noted in the Introduction, the second formulation of dependent products –whichwewill refer to as the funsplit-
formulation – has the same introduction and abstraction rules but replaces the application and β-rules with elimination
and computation rules which mirror those for the other constructors of type theory: they assert that each type 5(A, B) is
inductively generated by the elements of the form λ(f).

y : 5(A, B) ` C(y) type
f : (x : A) B(x) ` d(f) : C(λ(f)) m : 5(A, B)

funsplit(d,m) : C(m)
5-elim;

y : 5(A, B) ` C(y) type
f : (x : A) B(x) ` d(f) : C(λ(f)) x : A ` g(x) : B(x)

funsplit(d, λ(g)) = d(g) : C(λ(g))
5-comp.

3.4 Observe that the assumption f : (x : A) B(x) ` d(f) : C(λ(f))makes the funsplit rules into higher-order inference rules,
which as such are inexpressible in the ‘‘polymorphic’’ formulation of type theory. Our task in the remainder of this section
will be to reformulate these rules in a first-order fashion. Our treatment is a generalisation of that given byMartin-Löf in his
introduction to [7], with the major difference that we are working in the theory with intensional identity types, as opposed
to the extensional equality types of [7].

Proposition 3.5 (Cf. [9, p. 52]). In the presence of the rules5-form,5-intro,5-elim and5-comp, the rules5-app and5-β
are definable.

Proof. Suppose that m : 5(A, B) and a : A. We define a type y : 5(A, B) ` C(y) type by taking C(y) := B(a); and a term
f : (x : A) B(x) ` d(f) : C(λ(f)) by taking d(f) := f (a). Applying 5-elimination, we define app(m, a) := funsplit(d,m) :
B(a). Moreover, whenm = λ(f)we have by5-comp that app(λ(f), a) = d(f) = f (a), which gives us5-β as required. �

Proposition 3.6 (Cf. [9, p. 62]). In the presence of the identity types and the rules5-form,5-intro,5-elim and5-comp, the
following rules are definable:

m : 5(A, B)
η(m) : Id5(A,B)(m, λx.m · x)

5-prop-η;

x : A ` f (x) : B(x)
η(λ(f)) = r(λ(f)) : Id5(A,B)(λ(f), λ(f))

5-prop-η-comp.

Proof. Given y : 5(A, B), we define a type C(y) := Id5(A,B)(y, λx. y · x). In the case where y = λ(f) for some f : (x : A) B(x),
we have C(y) = Id5(A,B)(λ(f), λx. λ(f) · x) = Id5(A,B)(λ(f), λx. f (x)) = Id5(A,B)(λ(f), λ(f)) so that we may define an
element d(f) : C(λ(f)) by d(f) := r(λ(f)). Using5-elimination, we define η(m) := funsplit(d,m); and whenm = λ(f), we
have by5-comp that η(λ(f)) = d(f) = r(λ(f)) as required. �

Proposition 3.7. In the presence of identity types, the rules 5-form, 5-intro, 5-app and 5-β , and the rules 5-prop-η and
5-prop-η-comp of Proposition 3.6, the rules5-elim and5-comp are definable.

R. Garner / Annals of Pure and Applied Logic 160 (2009) 1–12 5

Proof. We first recall that in the presence of identity types,5-form,5-intro,5-app and5-β , wemay derive the following
‘‘Leibniz rules’’, which assuming A type and x : A ` B(x) type, say that

a1, a2 : A p : IdA(a1, a2) b2 : B(a2)
subst(p, b2) : B(a1)

Id-subst;

a : A b : B(a)
subst(r(a), b) = b : B(a)

Id-subst-comp;

see [9, p. 59], for example.
So, suppose given judgements A type, x : A ` B(x) type and y :5(A, B) ` C(y) type and terms f :(x :A) B(x) ` d(f) :C(λ(f))
and m : 5(A, B). We are required to define a term funsplit(d,m) : C(m) satisfying funsplit(d, λ(f)) = d(f). We begin by
forming the term

T (d,m) := d
(
[x : A]m · x

)
: C(λx.m · x).

Now by 5-prop-η, we have a term η(m) : Id5(A,B)(m, λx.m · x): and so by substituting T (d,m) along η(m) we obtain
a term funsplit(d,m) := subst

(
η(m), T (d,m)

)
: C(m) as required. Moreover, when m = λ(f), we obtain from 5-β that

T (d, λ(f)) = d(f), and from5-prop-η-comp that η(λ(f)) = r(λ(f)); and so from Id-subst-comp, we deduce that

funsplit(d, λ(f)) = subst
(
r(λ(f)), d(f)

)
= d(f) : C(λ(f))

as required. �

3.8 Thus, in the presence of identity types, the funsplit-formulation of dependent products is equivalent with the app-
formulation extended with the propositional η-rule. Note carefully that this equivalence is a propositional, rather than
definitional one;which is to say that ifwe are given a funsplit term, towhichwe apply Propositions 3.5 and 3.6 to obtain terms
app and η, and then Proposition 3.7 to obtain a new term funsplit′, we should not expect funsplit(d,m) = funsplit′(d,m) to
hold, but rather only that

y : 5(A, B) ` C(y) type f : (x : A) B(x) ` d(f) : C(λ(f)) m : 5(A, B)

ψ(d,m) : IdC(m)
(
funsplit(d,m), funsplit′(d,m)

)
should be derivable. We may prove this by an application of5-elim.

4. 5-application does not entail5-elimination

4.1 We saw in Proposition 3.5 that the funsplit-formulation of dependent products subsumes the app-formulation; and
the task of this section is to show that the converse does not obtain. In the previous section we were proving a positive
derivability result, and so worked in a minimal fragment of Martin-Löf type theory in order to make our result as strong as
possible. In this section, we are proving a negative derivability result: and to make this as strong as possible, we work in
full Martin-Löf type theory. So in addition to identity types and the app-formulation of dependent products we assume the
presence of dependent sums6x : A. B(x), the unit type 1, pairwise disjoint unions A+B, the empty type 0, theW-types, and
the first universe U. We refer to the type theory with these constructors asMLapp. Our main result will be:

Theorem 4.2. Relative to the theoryMLapp, the funsplit rules5-elim and5-comp are not definable.

Now, if we could define 5-elim and 5-comp relative to MLapp, then by Proposition 3.6 we would also be able to derive
5-prop-η and5-prop-η-comp. Consequently, we may prove Theorem 4.2 by proving:

Theorem 4.2′. Relative to the theoryMLapp, the rules5-prop-η and5-prop-η-comp of Proposition 3.6 are not definable.

4.3 Ourmethod of proving Theorem 4.2′ will be as follows.We first define the following rules relative to the theoryMLapp:

A type x : A ` B(x) type
5′(A, B) type

5′-form;
x : A ` f (x) : B(x)
λ′(f) : 5′(A, B)

5′-abs;

m : 5(A, B) a : A
app′(m, a) : B(a)

5′-app;
x : A ` f (x) : B(x) a : A
app′(λ′(f), a) = f (a) : B(a)

5′-β .

We then show that the corresponding rule 5′-prop-η is not definable; and from this we deduce that the rule 5-prop-η
cannot be definable either, since if it were then by replacing each 5, λ or app in its derivation with a 5′, λ′ or app′, we
would obtain a derivation of5′-prop-η, which would give a contradiction.

6 R. Garner / Annals of Pure and Applied Logic 160 (2009) 1–12

4.4 In order to define5′, λ′ and app′, we will make use of the disjoint union types. Given types A and B, their disjoint union
is a type A+ Bwith the following introduction and elimination rules:

a : A
q1(a) : A+ B

+-intro1;
b : B

q2(b) : A+ B
+-intro2;

z : A+ B ` C(z) type
x : A ` f (x) : C(q1(x)) y : B ` g(y) : C(q2(y)) c : A+ B

case(f , g, c) : C(c)
+-elim,

subject to the computation rules case
(
f , g,q1(a)

)
= f (a) and case

(
f , g,q2(b)

)
= g(b). We use disjoint unions to define

the5′-rules as follows.

A type x : A ` B(x) type
5′(A, B) := 5(A, B)+5(A, B) type

5′-form;

x : A ` f (x) : B(x)
λ′(f) := q1(λ(f)) : 5(A, B)+5(A, B)

5′-abs;

m : 5(A, B)+5(A, B) a : A
app′(m, a) := case(app(–, a), app(–, a), m) : B(a)

5′-app

where wewrite app(–, a) as an abbreviation for the term [x : 5(A, B)] app(x, a). To see that these definitions validate5′-β ,
we suppose that f : (x : A) B(x) and a : A; then by the first computation rule for disjoint unions and5-β we have that

app′(λ′(f), a) = case
(
app(–, a), app(–, a), q1(λ(f))

)
= app(λ(f), a) = f (a)

as required.

4.5 It remains to show that with respect to the above definitions, the rule

m : 5′(A, B)

η′(m) : Id5′(A,B)
(
m, λ′x. app′(m, x)

) 5′-prop-η
cannot be derived. So suppose that it could. Since for each judgement x : A ` f (x) : B(x)we have a termq2(λ(f)) : 5′(A, B),
we would obtain from this a derivation of

x : A ` f (x) : B(x)

η′(q2(λ(f))) : Id5′(A,B)
(
q2(λ(f)), λ′x. app′(q2(λ(f)), x)

)
.

But now by the definition of app′ we have that

app′(q2(λ(f)), x) = case(app(–, x), app(–, x), q2(λ(f))) = app(λ(f), x) = f (x);

and hence λ′x. app′(q2(λ(f)), x) = λ′x. f (x) = q1(λ(f)), so that we may view the above derivation as a derivation of

A type x : A ` B(x) type x : A ` f (x) : B(x)

η′(q2(λ(f))) : Id5(A,B)+5(A,B)
(
q2(λ(f)), q1(λ(f))

)
.

(?)

To complete the proof, it suffices to show that no such derivation can exist. The key to doing so will be the following
disjointness rule:

C type c : C p : IdC+C
(
q2(c), q1(c)

)
θ(c, p) : 0

, (Ď)

where 0 is the empty type. If we can prove that this holds relative toMLapp, thenwewill be able to deduce the underivability
of (?). Indeed, suppose that (?) holds. Then from this and (Ď) we can derive the following rule:

x : A ` f (x) : B(x)

θ5(A,B)
(
λ(f), η′(q2(λ(f)))

)
: 0
;

and by instantiating this derivation at some particular A, B and f – a suitable choice being A := 1, B := 1 and f := [x : 1] x –
we obtain a global element of 0. But this is impossible, because MLapp is known to be consistent, in the sense that 0 has no
global elements. An easy way of seeing that this is the case is by exhibiting a consistent model for MLapp using the sets in
our meta-theory. We interpret types as sets; dependent sums and products as indexed sums and products; identity types
as meta-theoretic equality; the terminal type as a one-element set and the empty type as the empty set. The interpretation

R. Garner / Annals of Pure and Applied Logic 160 (2009) 1–12 7

of W-types and the first universe is a little more complex, and depends upon the existence of inductive datatypes in our
meta-theory, but is essentially unproblematic.

4.6 All that remains to complete the proof of Theorem 4.2′ is to show that the disjointness rule (Ď) is derivable in MLapp.
This follows by a standard argument (cf. [9, p. 86]). Recall that one of the type constructors inMLapp was that for the universe
type [9, Chapter 14]. This is a type U containing ‘‘codes’’ for each of the other type formers ofMLapp. In particular, we have
rules

0̂ : U
U-intro1 and

1̂ : U
U-intro2

introducing codes for the empty type and the terminal type. Recall also that U comes equipped with a decoding function D
which is given by an indexed family of types

x : U ` D(x) type

together with computation rules which determine the value of D on canonical elements of U. In particular, we have rules

D(0̂) = 0 type
U-comp1 and

D(1̂) = 1 type
U-comp2.

So suppose now that C type, c : C and p : IdC+C
(
q2(c), q1(c)

)
as in the premisses of (Ď). We are required to derive an

element of 0. We begin by defining functions

x : C ` f (x) := 0̂ : U and x : C ` g(x) := 1̂ : U.

Applying+-elimination to these we obtain a function case(f , g, –) : C + C → U; and using the decoding function D on this
we obtain a family

z : C + C ` T (z) := D
(
case(f , g, z)

)
type.

Now from the rule Id-subst defined in Proposition 3.7, together with the given proof p : IdC+C
(
q2(c), q1(c)

)
we obtain the

term

x : T (q1(c)) ` subst(p, x) : T (q2(c)).

But we have that T (q1(c)) = D(f (c)) = D(0̂) = 0 and that T (q2(c)) = D(g(c)) = D(1̂) = 1, so that we may view this as a
function x : 1 ` subst(p, x) : 0. In particular, by evaluating this function at the canonical element ? : 1we obtain an element
subst(p, ?) : 0 as required. This completes the verification of the disjointness rule (Ď), and hence the proof of Theorem 4.2′.

5. Function extensionality

5.1 In this final section, we investigate the principle of function extensionality in Martin-Löf type theory, which asserts that
two elements of a dependent product typewhich are pointwise propositionally equal, are themselves propositionally equal.
Explicitly, it is given by the following two inference rules:

m, n : 5(A, B) k : 5x : A. IdB(x)(m · x, n · x)
ext(m, n, k) : Id5(A,B)(m, n)

5-ext;

f : (x : A) B(x)

ext
(
λ(f), λ(f), λ(rf)

)
= r(λ(f)) : Id5(A,B)(λ(f), λ(f))

5-ext-comp

where we write rf as an abbreviation for the term [x : A] rf (x). These rules were considered first by Turner in [12] and
then more extensively by Hofmann [4]. If one views Martin-Löf type theory as a computational system, in which terms are
thought of as algorithms – an idea made precise in [9, Appendix B], for example – then these rules are hard to justify, since
two extensionally equal functions can have quite different algorithmic content. From a proof-theoretic perspective they
are also problematic, since they destroy one of the more pleasant properties of Martin-Löf type theory, namely that in the
syntactic model, every global element of a closed type is definitionally equal to a canonical element.1 On the other hand,
they do not break strong normalisation, so that if we view type theory merely as a computable system – one for which
the correctness of derivations is decidable – then their addition is unproblematic, and in fact produces a system which is
closer to the ‘‘everyday’’ mathematics described by extensional type theory. Indeed, Hofmann [3] shows that augmenting
intensional type theory with function extensionality and the principle of uniqueness of identity proofs – which asserts that
any two proof-terms p, q : IdA(a, b) are themselves propositionally equal – yields a system which, whilst still decidable, is
propositionally equivalent (in the sense of Section 3.8) to extensional type theory.

1 Though a construction of Altenkirch [1] shows that there are models validating both function extensionality and the canonicity property.

8 R. Garner / Annals of Pure and Applied Logic 160 (2009) 1–12

The author’s motivations for studying the principle of function extensionality are somewhat different from those of [3];
they are informed by his investigations [2] into two-dimensional semantics for type theory. In this semantics, dependent
product formation is required to be a (suitably weak) two-dimensional right adjoint to reindexing; and in order for the
semantics to be complete, wemust verify that the syntacticmodel has this property—which requires the imposition of some
form of function extensionality. However, whilst preparing [2], it became apparent to the author that the usual formulation
of function extensionality is insufficient for this purpose because it fails to verify a number of necessary propositional
equalities between identity proofs. In the setting of [3], the existence of these propositional equalities is assured by the
principle of uniqueness of identity proofs; yet for a higher-dimensional semantics it is crucial thatwedonot have uniqueness
of identity proofs, whose impositionwould allow only trivial, posetal, models to be formed. Thus it is of interest to determine
how function extensionality should correctly be formulated when we do not have uniqueness of identity proofs; and it is
this that we shall now do. We work in the fragment of type theory given by the identity types and the app-formulation of
dependent products. In order to minimize clutter, we also allow ourselves the notational convenience of writing function
application f (x) simply as fx, and λ-abstraction λ(f) simply as λf . We begin by recording some useful consequences of
function extensionality.

Proposition 5.2. In the presence of 5-ext and 5-ext-comp, the rules 5-prop-η and 5-prop-η-comp of Proposition 3.6 are
definable.

Proof. Given m : 5(A, B), we must exhibit a term η(m) : Id5(A,B)(m, λx.m · x). So we define n = λx.m · x : 5(A, B); and
by5-β have that n · x = (λx.m · x) · x = m · x whenever x : A. We may now define η(m) := ext(m, n, λx. r(m · x)); and
moreover, whenm = λf for some f : (x : A) B(x), the β-rule implies thatm = n, so that η(λf) = ext(λf , λf , λ(rf)) = r(λf)
as required. �

Proposition 5.3. In the presence of5-ext and5-ext-comp, the following propositional ξ -rules are definable:

f , g : (x : A) B(x) p : (x : A) IdB(x)(fx, gx)
ξ(f , g, p) : Id5(A,B)(λf , λg)

5-prop-ξ ;

f : (x : A) B(x)
ξ(f , f , rf) = r(λf) : Id5(A,B)(λf , λf)

5-prop-ξ -comp.

Proof. Given f , g and p as in the hypotheses of 5-prop-ξ , we consider m = λf and n = λg in 5(A, B). By the β-rule, we
may view p as a term

x : A ` p(x) : IdB(x)(m · x, n · x);

and hence may define ξ(f , g, p) = ext(λf , λg, λp). Moreover, we have that ξ(f , f , rf) = ext(λf , λf , λ(rf)) = r(λf) as
required. �

In fact, we have a converse to the previous two propositions:

Proposition 5.4. In the presence of the rules 5-prop-η and 5-prop-η-comp of Proposition 3.6 and the rules 5-prop-ξ and
5-prop-ξ -comp of Proposition 5.3, the function extensionality rules5-ext and5-ext-comp are definable.

Proof. Recall from [6] that, in the presence of dependent products, the identity types admit an operation which one may
think of as either transitivity or composition:

p : IdA(a1, a2) q : IdA(a2, a3)
q ◦ p : IdA(a1, a3)

Id-trans;

p : IdA(a1, a2)
p ◦ r(a1) = p : IdA(a1, a2)

Id-trans-comp;

and also an operation which one may think of as either symmetry or inverse:

p : IdA(a1, a2)

p−1 : IdA(a2, a1)
Id-symm;

a : A

r(a)−1 = r(a) : IdA(a, a)
Id-symm-comp.

Now suppose that we are given termsm, n and k as in the hypotheses of5-ext. We begin by defining terms

f := [x : A]m · x : (x : A) B(x)
g := [x : A] n · x : (x : A) B(x)
and p := [x : A] k · x : (x : A) IdB(x)(fx, gx).

Observe that the third of these is well-typed by virtue of the first two. Applying the propositional ξ -rule, we obtain a term

ξ(f , g, p) : Id5(A,B)(λf , λg) = Id5(A,B)(λx.m · x, λx. n · x).

R. Garner / Annals of Pure and Applied Logic 160 (2009) 1–12 9

But from the propositional η-rule and Id-symmetry rule, we have terms

η(m) : Id5(A,B)(m, λx.m · x) and η(n)−1 : Id5(A,B)(λx. n · x, n)

and now can define ext(m, n, p) := η(n)−1 ◦
(
ξ(f , g, p) ◦ η(m)

)
: Id5(A,B)(m, n). In the case where m = n = λh and

p = λ(rh)we have by the β-rule that f = g = h, and so we may calculate that

ext(λh, λh, λ(rh)) = η(λh)−1 ◦
(
ξ(h, h, rh) ◦ η(λh)

)
= r(λh)−1 ◦

(
r(λh) ◦ r(λh)

)
= r(λh)

as required. �

Thus relative to the theory with identity types plus the app-formulation of dependent products, the function extensionality
principle is equivalent2 with the conjunction of the propositional η- and propositional ξ -rules; and relative to the theory
with identity types plus the funsplit formulation of dependent products, function extensionality is equivalent with the
propositional ξ -rule.

5.5 We now wish to describe the inadequacies of function extensionality in the absence of uniqueness of identity proofs.
These arise from its failure to continue a characteristic trend in intensional type theory, namely that nearly every statement
that one may think should hold about the identity types, does hold. For instance, in the proof of Proposition 5.4, we saw
that the identity types IdA come equipped with operations which we called composition and inverse. We would hope for
this composition to be associative and unital, and for the inverse operation to really provide compositional inverses; and a
straightforward application of Id-elimination shows this to be the case, at leastwhenwe interpret associativity, unitality and
invertibility in an ‘‘up-to-propositional-equality’’ sense. Similarly, each judgement x : A ` f (x) : B(x) induces a judgement
x, y : A, p : IdA(x, y)` f̃ (p) : IdB(x)(fx, fy)whichwewould expect to be suitably ‘‘functorial’’ in p: and again, an application of
Id-elimination confirms this, providing us with canonical propositional equalities between f̃ (q◦p) and f̃ (q)◦ f̃ (p). However,
when it comes to function extensionality, there are a number of statements which intuitively should be true but which seem
to be impossible to prove. Here are two typical examples.

Examples 5.6. (1) Using Id-elimination we can derive a rule
m, n : 5(A, B) p : Id5(A,B)(m, n) a : A

p ∗ a : IdB(a)(m · a, n · a)

satisfying r(m) ∗ a = r(m · a), which expresses that any two propositionally equal elements of a5-type are pointwise
propositionally equal.Wewould expect that for k : 5x : A. IdB(x)(m·x, n·x) and a : A, we should have k·a propositionally
equal to ext(m, n, k) ∗ a; yet this seems impossible to prove.

(2) Suppose given terms `,m, n : 5(A, B) and proofs f : (x : A) IdB(x)(` · x, m · x) and g : (x : A) IdB(x)(m · x, n · x). Let us
write g ◦ f for the term [x : A] gx ◦ fx. It now seems to be impossible to verify a propositional equality between the
elements

ext(m, n, λg) ◦ ext(`,m, λf) and ext(`, n, λ(g ◦ f))

of Id5(A,B)(`, n).

5.7 The reason that we encounter these problems is essentially the following. We would like to construct the desired
propositional equalities by eliminating over the type u, v : 5(A, B) ` 5x : A. IdB(x)(u · x, v · x). To do this we need an
elimination rule that we do not have, one which says that this type is generated by elements of the form (λf , λf , λ(rf)).
In light of this, we propose that function extensionality should be replaced with just such an elimination rule. We consider
the following two rules:

u, v : 5(A, B), w : 5x : A. IdB(x)(u · x, v · x) ` C(u, v, w) type
f : (x : A) B(x) ` d(f) : C(λf , λf , λ(rf))

m, n : 5(A, B) k : 5x : A. IdB(x)(m · x, n · x)
L(d,m, n, k) : C(m, n, k)

5-Id-elim,

u, v : 5(A, B), w : 5x : A. IdB(x)(u · x, v · x) ` C(u, v, w) type
f : (x : A) B(x) ` d(f) : C(λf , λf , λ(rf)) h : (x : A) B(x)

L(d, λh, λh, λ(rh)) = d(h) : C(λh, λh, λ(rh))
5-Id-comp.

Observe that these two rules are once again higher-order inference rules. We will return to this point in Section 5.11 below.
Let us first show that these rules entail function extensionality.

2 Again, in a propositional, rather than definitional, sense.

10 R. Garner / Annals of Pure and Applied Logic 160 (2009) 1–12

Proposition 5.8. In the presence of identity types, the app-formulation of 5-types and the rules 5-Id-elim and 5-Id-comp of
Section 5.7, it is possible to define the function extensionality rules5-ext and5-ext-comp.

Proof. For each u, v : 5(A, B) and w : 5x : A. IdB(x)(u · x, v · x) we define a type C(u, v, w) := Id5(A,B)(u, v); and for each
f : (x : A) B(x), we define an element d(f) := r(λf) : C(λf , λf , λ(rf)). Applying 5-Id-elimination, we obtain the desired
judgement

m, n : 5(A, B) k : 5x : A. IdB(x)(m · x, n · x)
ext(m, n, k) := L(d,m, n, k) : Id5(A,B)(m, n)

;

and calculate that ext(λf , λf , λ(rf)) = L(d, λf , λf , λ(rf)) = d(f) = r(λf) as required. �

Thus the5-Id-elimination rules are stronger than the function extensionality rules, and we conjecture that they are strictly
stronger. To prove this would require either finding a new model of type theory that supports function extensionality but
not 5-Id-elimination – new, because every semantic model of which the author is aware that supports the former, also
supports the latter – or giving a syntactic proof along the lines of that of Theorem 4.2. In both cases, the author’s efforts have
been unsuccessful. Leaving this aside, let us now show that the5-Id-elimination rules allow us to give positive answers to
the question posed in Examples 5.6.

Proposition 5.9. In the presence of identity types, the app-formulation of 5-types and the rules 5-Id-elim and 5-Id-comp of
Section 5.7, the following rules are definable:

m, n : 5(A, B) k : 5x : A. IdB(x)(m · x, n · x) a : A

µ(m, n, k, a) : IdIdB(a)(m·a, n·a)
(
ext(m, n, k) ∗ a, k · a

) 5-ext-app;

f : (x : A) B(x)

µ(λf , λf , λ(rf), a) = r(rfa) : IdIdB(a)(fa,fa)
(
rfa, rfa

) 5-ext-app-comp;

where ∗ is the operation defined in Examples 5.6(1).

Proof. For each u, v : 5(A, B) andw : 5x : A. IdB(x)(u · x, v · x)we define a type
C(u, v, w) := 5x : A. IdIdB(x)(u·x,v·x)(ext(u, v, w) ∗ x, w · x).

Now for f : (x : A) B(x), we calculate that

C(λf , λf , λ(rf)) = 5x : A. IdIdB(x)(fx,fx)(ext(λf , λf , λ(rf)) ∗ x, rfx)

= 5x : A. IdIdB(x)(fx,fx)(r(λf) ∗ x, rfx)

= 5x : A. IdIdB(x)(fx,fx)(rfx, rfx)

so that we may define d(f) := λx. r(rfx) : C(λf , λf , λ(rf)). An application of 5-Id-elimination now yields the judgement
5-ext-app by taking

µ(m, n, k, a) := L(d,m, n, k) · a : IdIdB(a)(m·a,n·a)(ext(m, n, k) ∗ a, k · a).

Finally, we compute that µ(λf , λf , λ(rf), a) = λx. r(rfx) · a = r(rfa) as required. �

Proposition 5.10. In the presence of identity types, the app-formulation of5-types and the rules5-Id-elim and5-Id-comp of
Section 5.7, the following rule is definable:

`, m, n : 5(A, B) f : (x : A) IdB(x)(` · x,m · x) g : (x : A) IdB(x)(m · x, n · x)

ν(f , g) : IdId5(A,B)(`,n)
(
ext(m, n, λg) ◦ ext(`,m, λf), ext(`, n, λ(g ◦ f))

)
Proof. It suffices to derive the rule:

`, m, n : 5(A, B) j : 5x : A. IdB(x)(` · x,m · x) k : 5x : A. IdB(x)(m · x, n · x)

ν ′(j, k) : IdId5(A,B)(`,n)
(
ext(m, n, k) ◦ ext(`,m, j), ext(`, n, λx. k · x ◦ j · x)

)
since the required result then follows by taking j := λf and k := λg . But by5-Id-elimination on k, it suffices to derive this
rule in the case wherem = n = λh and k = λ(rh); which is to show that

` : 5(A, B) h : (x : A) B(x) j : 5x : A. IdB(x)(` · x, hx)

ν ′(j, λ(rh)) : IdId5(A,B)(λh,n)
(
ext(λh, λh, λ(rh)) ◦ ext(`, λh, j), ext(`, λh, λx. r(hx) ◦ j · x)

)
is derivable. Butwe have that r(hx)◦j·x = j·x and that ext(λh, λh, λ(rh)) = r(λh) so that ext(λh, λh, λ(rh))◦ext(`, λh, j) =
ext(`, λh, j): so that it suffices to show that

` : 5(A, B) h : (x : A) B(x) j : 5x : A. IdB(x)(` · x, hx)

ν ′(j, λ(rh)) : IdId5(A,B)(λh,n)
(
ext(`, λh, j), ext(`, λh, λx. j · x)

)

R. Garner / Annals of Pure and Applied Logic 160 (2009) 1–12 11

is derivable. Now, using the propositional η-rule, we can derive a term η(j) witnessing the propositional equality of j and
λx. j · x; and we will be done if we can lift this to a propositional equality between ext(`, λh, j) and ext(`, λh, λx. j · x). But
we may do this using the following rule:

a, b : 5(A, B) c, d : 5x : A. IdB(x)(a · x, b · x) p : Id5x:A. IdB(x)(a·x,b·x)(c, d)

ẽxt(p) : IdId5(A,B)

(
ext(a, b, c), ext(a, b, d)

) ,

which is derivable by Id-elimination on p. �

In Section 4, we saw that the higher-order formulation of5-types can be restated in a first-order manner; and the final
result of this paper will do something similar for the5-Id-elimination rule.

Proposition 5.11. In the presence of the identity types; the app-formulation of 5-types; the function extensionality rules 5-
ext and5-ext-comp; and the rules5-ext-app and5-ext-app-comp of Proposition 5.9, we can define the rules5-Id-elim and
5-Id-comp of Section 5.7.

Proof. Suppose that we are given terms

u, v : 5(A, B), w : 5x : A. IdB(x)(u · x, v · x) ` C(u, v, w) type
f : (x : A) B(x) ` d(f) : C(λf , λf , λ(rf))

m, n : 5(A, B) k : 5x : A. IdB(x)(m · x, n · x)

as in the premisses of5-Id-elim.Wemust find an element L(d,m, n, k) : C(m, n, k).Wewill employmuch the samemethod
as we did in the proof of Proposition 3.7, though the details will be a little more complicated. We begin by constructing the
element d([x : A]m · x) : C(λx.m · x, λx.m · x, λx. r(m · x)); and the remainder of the proof will involve applying various
substitutions to this element until we obtain the required element of C(m, n, k). The key result we need is the following
lemma.

Lemma. We may define a rule:

u, v : 5(A, B) p : Id5(A,B)(u, v) c : C(λx. u · x, λx. u · x, λx. r(u · x))
φ(p, c) : C(u, v, λx. p ∗ x)

(?)

satisfying φ(r(λf), c) = c.

Before proving this, let us see how it allows us to derive the required element of C(m, n, k). Using function extensionality
we can form ext(m, n, k) : Id5(A,B)(m, n); and so by applying φ to this and d([x : A]m · x) can obtain an element

b(m, n, k) := φ(ext(m, n, k), d([x : A]m · x)) : C(m, n, λx. ext(m, n, k) ∗ x).

We now make use of the rule5-ext-app of Proposition 5.9, which provides us with a term

x : A ` µ(m, n, k, x) : IdIdB(x)(m·x, n·x)
(
ext(m, n, k) ∗ x, k · x

)
;

applying function extensionality to which yields a term

p(m, n, k) := ext(λx. ext(m, n, k) ∗ x, k, λx. µ(m, n, k, x)) : Id5x:A. IdB(x)(m·x, n·x)(λx. ext(m, n, k) ∗ x, k).

The final step is to use the Leibniz rule defined in the proof of Proposition 3.7 to form the required term L(d,m, n, k) :=
subst(p(m, n, k), b(m, n, k)) : C(m, n, k). We are also required to show that L(d, λf , λf , λ(rf)) = d(f). For this, we first note
that b(λf , λf , λ(rf)) = φ(r(λf), d(f)) = d(f) : C(λf , λf , λ(rf)). Next we observe that µ(λf , λf , λ(rf), x) = r(rfx) so that
we have

p(λf , λf , λ(rf)) = ext
(
λx. r(λf) ∗ x, λ(rf), λx. r(rfx)

)
= ext

(
λ(rf), λ(rf), λ(rrf)

)
= r(λ(rf))

so that L(d, λf , λf , λ(rf)) = subst(r(λ(rf)), d(f)) = d(f) as required.
It remains only to prove the Lemma. We will derive (?) by Id-elimination on p, for which it suffices to consider the case

where u = v and p = r(u). So we must show that

u : 5(A, B) c : C(λx. u · x, λx. u · x, λx. r(u · x))
φ(r(u), c) : C(u, u, λx. r(u) ∗ x)

is derivable; which in turnwemay do by5-elimination on u. Indeed, whenwe have u = λf for some f : (x : A) B(x), we find
that C(λx. u · x, λx. u · x, λx. r(u · x)) = C(λf , λf , λ(rf)) = C(u, u, λx. r(u) ∗ x) so that we may take φ(r(λf), c) = c. �

12 R. Garner / Annals of Pure and Applied Logic 160 (2009) 1–12

5.12 We end the paper with an informal discussion of the adequacy of our strengthening of the principle of function
extensionality. We have portrayed it as a necessary strengthening, but we have not indicated why we think it sufficient:
could there not be yet more exotic propositional equalities of the sort considered in Examples 5.6 which our 5-Id-
elimination rule cannot verify? The reason the author believes this not to be the case is essentially semantic. As mentioned
in Section 5.1, if we wish to describe higher-dimensional categorical semantics for type theory in which5-type formation
is a (suitably weak) right adjoint to reindexing, then we need a form of function extensionality. As it turns out, the 5-Id-
elimination rule given above is just what is needed to make this go through. The author has verified the details of this for
two-dimensional models in [2], and has sketched them for a putative theory of three-dimensional models. Moreover, there
is a general argument which suggests that this extends to all higher dimensions, which runs as follows.
When we form higher-dimensional models of type theory, we obtain the higher-dimensionality from the identity

type structure. In order for 5-type formation to provide a weak right adjoint to pullback, it must respect the higher-
dimensionality, and hence the identity type structure. Now, if we are given A type and x : A ` B(x) type, then dependent
product formation over x : A sends the identity type

x : A, y, z : B(x) ` IdB(x)(y, z) type

to the type

m, n : 5(A, B) ` 5x : A. IdB(x)(m · x, n · x) type;

and to say that function space formation preserves the identity type structure is to say that this latter type should act like
an identity type for5(A, B); and it precisely this which is expressed by our elimination rule5-Id-elim.

Acknowledgements

The author wishes to thank Johan Granström, Per Martin-Löf, Erik Palmgren, Olov Wilander and other members of the
Stockholm–Uppsala Logic Seminar for useful comments and suggestions on earlier drafts of this paper. He also thanks the
anonymous referee for several useful comments and suggestions.
He was supported by a Research Fellowship of St. John’s College, Cambridge and a Marie Curie Intra-European Fellowship,
Project No. 040802.

References

[1] Thorsten Altenkirch, Extensional equality in intensional type theory, in: 14th Symposium on Logic in Computer Science, Trento, 1999, IEEE Computer
Soc., Los Alamitos, CA, 1999, pp. 412–420.

[2] Richard Garner, Two-dimensional models of dependent type theory, Mathematical Structures in Computer Science (2009) (in press).
[3] Martin Hofmann, Conservativity of equality reflection over intensional type theory, Types for Proofs and Programs, Torino, 1995, in: Lecture Notes in
Comput. Sci., vol. 1158, Springer, Berlin pp. 153–164.

[4] Martin Hofmann, Extensional concepts in intensional type theory, Ph.D. Thesis, University of Edinburgh, 1995.
[5] Martin Hofmann, Syntax and semantics of dependent types, in: Semantics and Logics of Computation, Cambridge, 1995, in: Publications of the Newton
Institute, vol. 14, Cambridge University Press, 1997, pp. 79–130.

[6] Martin Hofmann, Thomas Streicher, The groupoid interpretation of type theory, in: Twenty-five Years of Constructive Type Theory, Venice, 1995,
in: Oxford Logic Guides, vol. 36, Oxford University Press, 1998, pp. 83–111.

[7] Per Martin-Löf, Intuitionistic type theory, Studies in Proof Theory, Bibliopolis, Naples, 1984.
[8] Per Martin-Löf, An intuitionistic theory of types, in: Twenty-five Years of Constructive Type Theory, Venice, 1995, in: Oxford Logic Guides, vol. 36,
Oxford University Press, 1998, pp. 127–172. Reprinted version of an unpublished report from 1972.

[9] Bengt Nordström, Kent Petersson, Jan Smith, Programming in Martin-Löf’s type theory, in: International Series of Monographs on Computer Science,
vol. 7, Oxford University Press, 1990.

[10] Peter Schroeder-Heister, A natural extension of natural deduction, Journal of Symbolic Logic 49 (4) (1984) 1284–1300.
[11] Anne Troelstra, Dirk vanDalen, Constructivism inMathematics. Vol. II, in: Studies in Logic and the Foundations ofMathematics, vol. 123, North-Holland

Publishing Co., Amsterdam, 1988, An introduction.
[12] David Turner, A new formulation of constructive type theory, in: Proceedings of the Workshop on Programming Logic, Programming Methodology

Group, Göteberg, 1989, pp. 258–294.

	On the strength of dependent products in the type theory of Martin-Löf
	Introduction
	Martin-Löf type theory
	A first-order reformulation of the Π -elimination rule
	Π -application does not entail Π -elimination
	Function extensionality
	Acknowledgements
	References

