BISIMULATION VS TRACE EQUIVALENCE

1) Generalive T-systems

Define Let A be a finite set (an allphabet) and let T be a monad on Set. A generalize T-system of allphabet A is a set S of states) that a function $\sigma: S \to T(A \times S)$. We write Cent for early of such systems, where a map $(S,\sigma) \to (S',\sigma')$ is a f^{L} $f: S \to S'$ st $\sigma' \circ f = T(A \times f) \circ G$.

Ex When T=id, get deterministic gen systems: comprises or set S of states, and a f^n $\sigma = (g,n): S \rightarrow A \times S$, assigning to each state s, an arbitrary symbol g(s), and a next state n(s).

Comprises a set S, t/w a relation $\sigma \subseteq S \times A \times S$, written as $s \xrightarrow{\alpha} s'$ if $(s, a, s') \in \sigma$, such that for all $s \in S$, $\{(a, s'): s \xrightarrow{\alpha} s'\}$ is $\{\text{novempty finite}\}$,

Eg:
$$A = \{a, b, c\}$$
, we have $1ts's$:

 $a \in S$
 $b \in S$

Ex When T=0, the finitely supported pub. dist. monad, with $D(X) = \{\omega: X \to [0,1]: \text{ supp}(\omega) \text{ finite}, \sum_{x \in X} \omega(x) = 1\},$

we get probabilishic generaline systems: set S thut $\sigma\colon S\longrightarrow \mathcal{D}(A\times S)$, giving for each state a pob. dist. over extput symbols + next states, eg:

2) Bisimulation equivalence

For a deterministic gen. system $6 = (g,n): S \longrightarrow A \times S$, each state sets has a corresponding behaviour: $(g(s), g(n(s)), g(n(n(s))), ...) \in A^{N}$.

We call states $s, s' \in S$ bisimilar if they have the same behaviour; equivalently, if they are related by a bisimulation: a eq. red? $\equiv C S \times S S S + S$

$$u \equiv v \implies g(u) = g(v)$$
 and $n(u) \equiv n(v)$.

We can capture bisindarity abstratty: indeed, A'N is the underlying set of the final determ. gen. system:

$$\alpha: A^{IN} \longrightarrow A \times A^{IN}$$

$$(a_0, a_1, \dots) \longmapsto (a_0, (a_1, a_2, \dots))$$

and two states are bisincler if have some image under the ! map $S \longrightarrow A^{IN}$ in Genia.

Defin An obj of behaviors for gen. T-systems is a final object (Beh, β) in Gen,. The behavior map of $S \in Gen_T$ is the ! may beh: $S \longrightarrow Beh$ in Gen,. Two states $S, S' \in S$ are bisinilar if beh(s) = beh(i).

Ex When T=id, we get what we saw above.

Ex When $T = P_s^t$, $s, s' \in S$ are bisinilar if related by a bisinulation on S: an eq. rel $= \subseteq S \times S$ st

Eq: in sign of the control of the co

Ob

have s, s' bismila t, t' bismila

Ex When T=D, s, s' $\in S$ are bisimilar iff related by some $\equiv \subseteq S \times S$ eq. rel. st:

u ≡ v => 6(u)({a}xC) = 6(v)({a}xC) for all a∈A, C∈ S/=

Eq: $\frac{1}{1}$ ($\frac{1}{2}$) $\frac{1}{2}$ ($\frac{1}{$

 $(a,\frac{1}{6})$ $(a,\frac{1}{2})$ $(a,\frac{1}{2})$ have s,s' bisinclar $(a,\frac{1}{6})$ $(a,\frac{1}{2})$ $(a,\frac{1}{2})$ have s,s' bisinclar

3) TRACE EQUIVALENCE

Consider the 1t3:

$$a_{c}$$
 b_{c} b_{c

The states s, s' are not bisinila. But they are "the same" in a weaker sense, since both produce the same possible streams of values:

Defin An A-ay comagna in a caly ℓ with coponers is an object $X \in \ell$ $\mathcal{H}w$, $\mathcal{E}: X \longrightarrow \mathcal{A} \cdot X$.

Now note: a generative T-system $S \to T(A \times S)$ is some as an A-ary comagna $S \to A \cdot S$ in Kl(T). However, maps of gen. T-system are functions; maps of A-ary comagnes in Kl(T) are Kl(T) are Kl(T) are Kl(T).

P-T define an object of traces to be a final A-cry comagna in Kl17), and how states to be trace equiv if

identified by the ! map to this object of traces in tal(T).

Issue: an object of traces need not exist! Eq: it exists for T=id, $T=P^+$, but not for $T=P^+_f$, T=D.

To fix this, we can look for a final A-ay conagna, not in KR(T), but in EM(T).

Defer An object of traces for gen, T-systems is a find A-any concegna (Tr, T: Tr-, A.Tr) in EM(7).

 $\bigvee^{+}(A^{(N)}) \xrightarrow{\bigvee^{+}(A)} \bigvee^{+}(A \times A^{(N)}) \cong A \cdot \bigvee^{+}(A^{(N)})$ The closed sufficients

Ex When T=D, Tr=Borel probability dists on A^{IN} seen as D-alg under conver combination.

To assign a here to an elevant of a gen. T-system, need:

Defin Given $S \xrightarrow{6} T(AxS)$ a gen T-system, the associated A-cry comagna in EM(T) is $F^{T}(S) = (T(S), M_{S})$ W comagna shuchre:

$$6^{\#} = F^{\uparrow}(S) \xrightarrow{F^{\uparrow}} F^{\uparrow}(T(A \times S)) \xrightarrow{M} F^{\uparrow}(A \times S) \cong A \cdot F^{\uparrow}(S)$$

Green (S,σ) , the truce map $tr: S \to Tr$ is the precomposite of the! homomorphism $(F^{\overline{1}}(S), \sigma^{\#}) \to (Tr, \overline{c})$ with $\eta: S \to T(S)$. Two states are truce equivalent if tr(s) = tr(G').

Ex. when T=id, trace = behaviour.

· when T=Pgt, the trace of SES is the closed set

- when T=O, the truce of SES is the pub distor AIN:

$$tr(s)(A^{IN}) = 1$$

$$tr(s)(a_0 \cdots a_n A^{IN}) = \sum_{t \in S} G(s)(a_0, t) \times tr(t)(a_1 \cdots a_n A^{IN}).$$

Merkin:

• Another interesting example: $T = T_B = \text{free monad on a}$ B-any oftendion. A gen T_B -system is an automaker for turning B-streams into A-streams. Eq: $A = B = \frac{20}{3}$, have $\sigma: S \longrightarrow T_B(A \times S)$ given by

$$S \longmapsto (0,t) \quad (0,s)$$

$$t \longmapsto (0,t) \quad (1,t)$$

$$0 \longmapsto 1$$

here the slate s implements the "+1" operation binary sheam, ey:

[110011··· | 0001011···

OTON: Object of trace is set of the grade sure that equiv. if they excel sure the f_{\perp}^{N} .