
1

Revisiting Sisyphus I - An Incremental Approach to
Resource Allocation using Ripple Down Rules

Debbie Richards
Department of Computing

Div of Information and Communication Sciences
Macquarie University

Sydney, Australia
Email: richards@ics.mq.edu.au

Paul Compton
Department of Artificial Intelligence

School of Computer Science and Engineering
University of New South Wales

Sydney, Australia
Email: compton@cse.unsw.edu.au

Abstract: This paper offers a ripple-down rules (RDR) solution to the SISYPHUS-I room allocation task in
response to a recent call for papers to the conceptual graph community to solve this problem. RDR have not
previously been applied to the problem of resource allocation and we were interested in seeing whether the problem
solving method (PSM) we have used for classification and configuration was also suitable for this task. It has long
been our goal to see whether one coarse-grained PSM could be used to solve a wide range of problem types with the
key difference between these types being the amount of knowledge needed to be given to the PSM. This paper
includes a description of the tool, RDR structures, KA and our solution together with a comparison with previous
approaches to this problem. What is most notable is that all the other approaches require substantial modelling
before a solution can be found. In contrast, RDR uses the data provided in the documentation to build a knowledge
base with minimal a priori analysis. We found that a high level model was not necessary for this problem but for
explanation purposes we could automatically generate an abstraction hierarchy of our primitive concepts using
Formal Concept Analysis. Our solution proposed that the problem be treated as a configuration task where people
are components with empty room slots. Our classification inference engine was sufficient to map people to rooms
and a few enhancements to an existing tool were made to handle allocating and tracking resources.

1. Introduction
This paper offers an RDR solution to the SISYPHUS-I (SIS-I) room allocation task in response to a recent
call for papers to the conceptual graph (CG) community to solve this problem. The reason for this response
is threefold. Firstly, RDR have not previously been applied to this type of problem and we wanted to
investigate the robustness of our problem solving approach to a different type of task. Secondly, the call for
papers to the CG community proposed that KA related papers would be presented at the next KAW and
thus, although SISYPHUS I is not a current project of the KA community, there is opportunity for a
renewed look at the task of room allocation. Thirdly, we were interested in comparing our results based on
minimal modelling of the domain with the results using conceptual graphs and the earlier KA community
solutions, both of which tend to involve extensive modelling.

The offering of an RDR solution to the SIS-I problem sought to determine the following:

• Can RDR handle resource allocation problems ?
• How does resource allocation compare to configuration and classification ?
• Can a classification PSM be used for resource allocation ?
• What is the role of specific problem solving methods ?
• Is one coarse-grained PSM adequate ?

 This paper contains the four sections specified in the original SIS-I documentation which covers the tool
description, protocol interpretation, solution description and KA approach in sections 2 to 5. It was difficult
to separate these four parts since the protocol became a transcript of the KA process and the act of KA
using the tool was the means of building the system and achieving a solution. Section 6 provides a
reasonably lengthy discussion of alternative solutions to this problem. Our closing remarks are in Section 7.

2

 2 Tool Description and Generic Structures
 The solution described in section 4 uses an existing tool known MCRDR/FCA which is a prototype
Windows implementation of Multiple Classification Ripple-Down Rules (MCRDR). MCRDR/FCA also
supports the generation of formal concepts and the drawing of concept lattices using Formal Concept
Analysis (FCA) (Wille 1982). An MCRDR system is a set of cases, a knowledge base in the form of
exception rules and a set of related files for storing such information as associations between rules and
cases, conclusion code descriptions, comments and functions for preprocessing the case data. Depending on
the domain some of these files such as the comments and command files may not be used. The tool is a
Visual Basic (VB) project with screens and a combination of C++ and VB code which provide the interface
between the user and the system, some pre or post processing of the data and the inference engine. The
inference engine is a general purpose non-monotonic reasoner that simply runs a case against the
knowledge-base and produces one or more conclusions. The knowledge base is made up of decision lists of
exceptions. In Figure 1 we can see two levels of decision lists. An MCRDR is defined as the quadruple
<rule,P,C,S>, where P is the parent rule, C are the children/exception rules and S are the sibling rules
within the same level of decision list. If a rule evaluates to false then no further lists attached to that rule are
examined. All rules attached to true parents are evaluated against the data. The list of every true rule is
processed in this way. The last true rule on each path constitutes the conclusions given.

Rule 0:
If true then....

Rule 1:
If a,c then Cls 1

Rule 2:
If a,d then Cls 2

Rule 4:
If k then Cls 3

Rule 3:
If e then Cls 4

Rule 6:
If f,e then Cls 6

Rule 8:
If i then Cls 7

Rule 5:
If g,h then Cls 5

Rule 9:
If i then Cls 7

Rule 7:
If d,g then Cls 5

Rule 10:
If a,h then Cls 8

 Figure 1. An MCRDR KBS.
 The highlighted boxes represent rules that are satisfied for the case {a,d,g,h,k}. We can see that there are three

conclusions, Class 2 (Rule 2), Class 5 (Rule 5) and Class 8 (Rule 10).

 As is explained in greater detail in Section 5 on KA, the tool is designed to be used by the expert/user rather
than by a knowledge engineer (KE). It is an interactive system that allows the user to run a case to receive a
conclusion and to add a new rule if the user wants to change (such as enter a new rule, stop an incorrect
rule or add an exception rule to modify an existing rule) the knowledge base. Note that rules are never
deleted or altered but new rules are added which may override earlier rules.

 In RDR systems there is tight coupling between cases, rules, KA and validation. Each time a rule is added
in response to a case being misclassified, that case is stored in association with the new rule and is known
as the rule’s cornerstone case. Since one case may produce multiple conclusions there may be multiple rules
associated with that cornerstone case. These cases are used for validation and for assisting the user in
selecting appropriate rule conditions for the new rule/s. The system creates a set of cases based on the
cornerstone cases associated with each rule that gave a conclusion. To add a new rule the system presents
one cornerstone case at a time to the expert who must pick some feature in the cornerstone or current case
which distinguishes the two. If any further cases in the set are still not distinguished by the feature/s chosen

3

another case is shown until all cases have been distinguished. This may sound like a time consuming
activity but even with a large number of cornerstone cases the user generally only needs to be shown one to
three cases (Kang 1996). The process ensures that previously correctly classified cases do not become
misclassified when an exception rule is added.

 The tool used has been shaped by a situated view of cognition. According to this view expertise is seen to
be something that is typically exercised reflexively in response to a situation. The response and the situation
interact and change one another. This is what happened to our people cases, which are first used to create a
rule, then to determine which rules should fire and which rooms to suggest. Once a suggestion is accepted
the case will be modified to include room details. In answer to the challenges of situated cognition, RDR
ground knowledge in the form of exception rules using cases and offer a way of easily maintaining and
validating the inevitable changes. The expert is responsible for KA and maintenance so KA needs to be
simple and natural. We make no attempt to build a model of the expert’s reasoning. The approach is based
on observations of expert behaviour and our goal is to achieve similar results in a way that fits with that
behaviour. Cases are a natural way for the expert to look at their domain. KA becomes the simple task of
assigning a conclusion and picking some features of the case to form the rule conditions. Going straight
from data to conclusion, avoids the need to develop a higher level abstraction, which we argue is difficult to
capture and even harder to validate. As will be shown later it is possible to use concepts from FCA to
uncover an underlying higher level model based on the primitive rules. The lack of analysis and modelling
distinguishes RDR from almost every other KA approach. Even in Aussenac-Giles and Matta (1994) where
the first step is a bottom-up approach based on the data, the purpose of bottom-up analysis is to build a
model that can be used to assist KA.

 Room allocation is a resource allocation task. RDR have previously been applied to tasks of classification
in a number of domains and to configuration in the ion chromatography domain. It was found that the same
problem solving method could be applied to both of these tasks. The only difference was that configuration
required multiple inference cycles, each time using output from a previous cycle to fill in the missing parts
of the configuration and then cycling again until a complete solution was found. Resource allocation has a
few features that differentiate it from configuration. In configuration we are trying to find a suitable value
to fill a slot while satisfying the constraints which exist regarding what combinations of attribute values are
permissible. This is also true of resource allocation but we have the additional constraint that a resource has
limited availability. In the case of our rooms, the room is no longer available once one or two (this value
depends on the features of the room and the features of the occupant) people have been assigned to that
room. Another difference between resource allocation and configuration is that in configuration we are
saying we want a type of thing to be allocated e.g. a cd-rom drive. In resource allocation we want a
particular cd-rom to be allocated to a particular order. In the SIS-I situation, we want a particular room to
be assigned to a particular person. One of the problems with configuration tasks is the combinatorially
explosive number of ways a set of items can be configured. This is not the case with resource allocation as
resources are finite and have limited usage. This makes resource allocation more manageable and involves
classifying two types of cases concurrently - the resource and the user of the resource. Two issues that need
to be dealt with in resource allocation is the situation were resources have been underdetermined
(insufficient constraints to identify a solution) or overdetermined (no solution because constraints are too
tight) (Gaines 1994).

 In keeping with the RDR philosophy upon which the tool has been built, an RDR solution to resource
allocation had a number of criteria to meet: (Criteria 1)

• Analysis or modelling of the domain and problem needed to be kept to a minimum.
• The knowledge representation was not to be altered : that is, the MCRDR exception structure was to be

used.

4

• Cases and cornerstone cases were to be used to motivate and validate KA.
• The KA technique needed to be simple.
• It was desirable to use the same inference engine as is used for classification and configuration.
• If all of the above were possible then the only changes to the existing tool would be changes to the user

interface and some functions to keep track of resources.

 3 Protocol Interpretation
 As a follow on from the criteria described in the previous section, an RDR solution to the SIS-I problem
had a number of additional criteria to meet: (Criteria 2)

• The data used were to be restricted to that provided in the original material.
• The KA technique was to be in keeping with the observed behaviour of experts performing a resource

allocation task. The protocol provided a good example of how such expertise is exercised.
• The solution needed to work when the data changed, as described in 2.5 of the SIS-I documentation.

The material provided with the SIS-I problem included data in the form of a table of people with various
features to be placed, a protocol recording the expert’s assignments and his reasons, a floor plan of the
rooms and some additional comments. The protocol was a demonstration of expertise in action and
confirmed the RDR view of expertise as being something that is situated and specifically shaped by the case
at hand. It was our goal to use the SIS-I documentation with minimal change.

Since RDR is a case-based approach to KA, an essential ingredient is a set of cases. These cases may be
historical (e.g. from a database or archive) or current cases (e.g. a set of results to a pathology test) or
hypothetical (e.g. a computer-generated set of data based on possible values or a hand-crafted set of cases
provided by an expert). The table of people in the documentation is easily treated as a set of cases.
Additional information from section 2.1.2 was used to modify the values for the role attribute. For example,
2.1.2 identifies Thomas D as the head of the group YQT and Hans W, Katharina N and Joachim I as heads
of large projects. To reflect the higher status of these individuals two new values for the role attribute have
been added :- Head_of_Group and Head_of_Large_Project. These values are critical in identifying those
who are entitled to a room of their own and in determining the size and location of rooms that should be
allocated. The people cases were expanded to include the room details which were treated as empty slots
that would be filled in when the room was allocated as shown in Figure 2. In many domains, such as
pathology report interpretation and ion chromatography configuration, it is also necessary to preprocess the
data so that time-course or continuous data can be discretised or to convert data at one level of abstraction
to a different level of abstraction. This situation occurs when data are recorded using scales that are not
appropriate or in keeping with the way the expert reasons about that data. We added two functions to
handle the different project restriction and to change the value of the close_to attribute to refer to the type
of person in that room rather than the room number which was the feature available in the case. The
occupant attribute was added to keep track of who a person was sharing with so that it was possible to
check if a new person was compatible with the person already in there.

The documentation did not directly provide room cases. These cases were developed based on the floor plan
and the room features (such as size, location and its proximity to other rooms) which the expert identified as
important. Two room cases are shown in Figure 3. With a set of room and people cases and the protocol we
were ready to both design and implement our solution.

5

#1 05-12-1999 16:29:16
Name Werner
Role Researcher
Project RESPECT
Smoker No
Hacker True
Works_with Angi Marc ?
Office C5_121
Size Large
Description ?
Close_to C5-120 C5_122

?
Occupant Werner Jurgen

#2 05-12-1999 16:29:19
Name Marc
Role Researcher
Project KRITON
Smoker No
Hacker True
Works_with Angi Werner

?
Office C5_122
Size Large
Description ?
Close_to C5_121 C5_123

?
Occupant Marc ?

Figure 2: Two cases from the people file after the person has been allocated a room and the slots have been filled
in.

#1 01-13-1999 19:35:03
Name C5-113
Size Small
Description ?
Close_to C5_114

C5_115? ?
Occupant Hans

#2 01-13-1999 19:35:04
Name C5_114
Size Small
Description ?
Close_to C5-113 C5_115

C5-116
Occupant Katharina

Figure 3: Two cases from the room case file.

4 Solution Description
The solution described in this section has adhered to the basic RDR KA approach which is to use cases and
an expert to acquire knowledge (rules). Inferencing is tightly interwoven with KA and new knowledge is
only acquired when a case is misclassified. In the case of resource allocation, inferencing and KA was not
enough. It was also necessary to add functions which passed a partial rule pathway to the inference engine
to determine which room cases satisfied the room part of the rule, suggest a room and update the cases with
room/people details if they were allocated.

To satisfy the first set of criteria (given in section 2) the solution uses cases to drive KA. KA is the act of
acquiring rules and results in a simple model of the problem in terms of conclusions and attribute-value
pairs. The allocation task was treated as a configuration task were each case was made up of a person and
their details and empty slots regarding the room that they should be allocated. A person case is run against
the rule base, all rooms that satisfy the rule are displayed to the user. If there is only one room that satisfies
the rule and it is not allocated it is shown as the recommendation. The incremental and failure-driven nature
of KA in RDR provides a way of handling the situation where resources are overdetermined or
undetermined. If there are no rooms suggested the user must add a new rule to identify the type of room that
would be suitable. This addresses the underdetermined situation. The user is also free to select a room
which has already been allocated if it appears that that room is more appropriate for the current person than
the previous person. This requires undoing earlier assignment actions, rerunning the set of cases to derive a
modified set of cornerstone cases (the backtrack function). This addresses the overdetermined situation.
These choices are described in greater detail in Section 5 on Knowledge Acquisition.

With the small dataset provided with the SIS-I documentation, it was not necessary for the inference engine
to cycle as we had done in the case of configuring for ion chromatography. It was possible to use straight
classification (similar to Gaines’ (1994) solution or Schreiber’s (1994) use of propose only) to achieve a
solution. We did find that it was necessary to enhance our current tool to handle an additional case file (we

6

needed people and room cases) and to add some functions and text boxes to handle the actual allocation (as
opposed to the inference engine which handled making suggestions) of resources.
Accessing more than one case file was trivial and simply required specifying from which file to read. To
handle the display of suitable rooms, room details and their allocation, two screens have been modified.
Two text boxes were added to the Inference screen. One box lists the rooms which met the room criteria
specified in the rule that fired and includes occupied and available rooms. The other text box shows the
room suggested by the system as shown in Figure 4. The suggestion is the first available room from the list
in the other text box. The user is able to double-click on any room suggested that is free to assign the room
to that person which involves updating the person case with the corresponding room details and updating
the room case with the new occupant. If a room which is already occupied is preferred the user can right
click and choose to remove the current occupant and initialise that person’s room slots. The current person
is then assigned to the selected room and the case/s of the people who were removed are rerun again and
another room is allocated.

Figure 4: The inference screen. Here suitable rooms are shown and the first available one is suggested. The user
double-clicks to accept or right-clicks to assign a room already allocated.

The other screen that was changed was the Make screen which creates a new rule, see Figure 5. This screen
already showed the current case and the cornerstone case which the user needs to compare so that a feature
that differentiates the two is chosen. (The system actually generates a difference list to make this easier for
the user but the user often likes to manually compare the two cases themselves). We added a box to show a
room case which can be used to select conditions. The actual case shown is the one selected on the Inference
screen or they may specify a room number on this screen and be shown that case. The conditions chosen
must differentiate between the cornerstone case (which is a combination of a person and room case as the
room slots have been filled in) and the current person and selected room case. Thus the requirement of
distinguishing between the new case and case associated with the rule that gave the misclassfication is the
same as described in section 2.

Changes to the screens were trivial using VB. The code (methods) behind the screen controls required the
most effort. Four new functions/subroutines needed to be added. The first function Find_Case_Match
passed the room related part of the rule pathway to the inference engine to get a set of rooms that satisfied
the rule and then passes the people related part of the rule (after some preprocessing) to check if any of

7

those rooms contravene the people criteria such as performing the same role, working on different projects
or both smoker or non-smokers.

The second function Find_All_Unalloc is run in place of the Find_Case_Match function when no rule has
fired and shows all available rooms. This allows the user to pick a suitable room and then add a rule which
specifies why that room is suitable for that person. If none of the available rooms are suitable the expert
may choose to add a rule which will pick up all rooms that match the rule conditions whether they are
allocated or not. The user then uses the backtrack function as described below. The Find_All_Unalloc also
handles the situation where even though a rule fires, there is no room left that matches the criteria. In this
situation all available rooms are shown in addition to the allocated rooms that satisfy the conditons. This
feature is used to handle the second problem statement since when Katharina leaves her room becomes
available even though it does not satisfy the criteria for a researcher such as Christian. The third function,
Update_Case_Files, takes the room selected by the user, fills in the room details in the current person case
and updates the room with the occupant details. The fourth function, Backtrack, is used to reassign a room
by initialising the room details in the one or more person cases that had previously been allocated to the
room, running Update_Case_Files with the current person and selected room, and then rerunning the
inference for the people cases that were removed. Since our approach is not based on building a search
space to explore but on repeatedly rerunning the inference engine to allocate the next person the Backtrack
function does not include the notion of storing the past which is then recreated. Backtrack simply undoes
earlier assignments so that when the case is rerun the detected conflict has been removed., the new case is
assigned and the case that was unassigned by Backtrack is then assigned.

Figure 5: The Make Screen allows the user to enter a new rule by selecting which conclusion to add or stop and
then picking features which distinguish the current and cornerstone case.

The rules are generic and used to find matches on people and rooms. Note rules are based on cases and
therefore are specific to the domain and application, but the functions described are domain independent.
The test that two researchers were working on different projects was handled by a user-defined function.
However, the ability to add user-defined functions was already part of the system. User-defined functions

8

were originally developed to handle time-course data for pathology results so that it could be determined if a
factor was increasing/decreasing, at a maximum or minimum level or to provide preprocessing or
abstraction of the data series. We have used the facility to specify more than one value for an attribute
(which for time-series data represents the attribute-value at different points in time) to handle the ideas of a
room having more than one occupant, a person working with more than one person or a room being close to
more than one room. We can use these different values in functions for comparison of what rooms are
close to one another. We can also specify a user-defined function to take the close_to room number
specified by the user and to replace the value with the role of the person in that room, which is a more
sensible interpretation.

A key feature of the RDR solution is that the acquisition of rules and the assignment of rooms is done
simultaneously. In keeping with the nature of KA in RDR, the expert is directly responsible for entering the
rules and rules are added in response to a case being seen that is not classified or not classified correctly.
The knowledge is built up incrementally. The user has the option of having the system automatically
allocate its first preference. Note that the solutions do not match exactly with Siggi D’s solution. From the
protocol it is apparent that some rooms are equally suitable. For example, C5-113, C5-114 or C5-116 are
suitable for Joachim, Hans or Katharina. We have also had some different groupings of researchers as we
could not see that the alternative person was any less suitable that Siggi’s suggestion. Our assumptions may
be incorrect, and we give examples of why we find the assignments equivalent. Since the expert is the
provider of the rules and assigner of the rooms any misunderstanding on our part would not occur since the
expert is free to add another rule or select a different room. We also could add the facility for the
assignments to run in batch-mode, but this is not necessary for such a small problem and is not in keeping
with the usual KA technique in RDR. Batch-mode requires KA to occur up-front and not incrementally as
cases arise. Note: that if we unallocate each person and rerun the KB against those cases we would achieve
the same result outlined below by letting the system accept its first suggestion. This is only possible when
cases are prioritised. We discuss the alternative in Section 5.1 which requires bactracking and user-
intervention. In the domain of pathology it is not acceptable to have the system interpret a pathology report
without the pathologist reviewing such a comment and potentially changing the interpretation by adding
new knowledge. Room allocation is not life critical, although some may see a poor assignment as life-
threatening, so we could just provide a trace which the user could review. Any assignments that were
unsuitable or undetermined could be handled with the backtrack function.

In summary the solution involves:
Inputs - a set of people cases with missing room details, a set of room cases, and a KB (which would

initially be empty).
Processing - match people to rooms (inference), add rules for allocating rooms (KA) rerun inference.
Output - a set of people cases with room details filled in and an updated knowledge base with general

rules for future room allocations.

Below is an account of acquiring the rules and assigning people to rooms using sequenced cases according
to the priority that Siggi D, the wizard, used. The protocol is used as the template for acquisition and
assignment.

The resultant MCRDR knowledge base is shown in Figure 6. No rules have been added which deal with the
different project constraint. This is because using the sequence of assignments in the protocol allowed the
problem to be solved without this additional feature. We could have even not used the smoker constraint
since grouping them in this order meant that researchers were assigned in compatible pairs. We have
observed that experts tend to only pick the minimum features to classify a case. It is only when a conflict
occurs that additional features need to be added to differentiate between cases. If the sequence had been

9

different it would have been necessary to add rules to cover more compatibility criteria of occupants. Even
when we used the cases in sequential order (non-prioritorised) as discussed in Section 5.1 all criteria where
not necessary for that sequence of cases.

Assignment Actions
1. Thomas D. into C5-
117

All rooms are shown as free and suitable as no rules have been entered. User chooses
ReClassify, adds %HEAD1 conclusion, selects room C5-117 on the Make Rules
screen . This does not mean this is the room the user will choose but it is a room
which has the features the expert considers suitable. The user also could have entered
conditions without a case to guide them. User selects the features role=
Head_of_Group; size=large; location=central from the cases for Thomas and C5-117.
Rerun the inference - two rooms are shown - C5-117 and C5-119. The expert selects
C5-117.

Monika X and Ulrike
in C5-119

Monika’s case is run first. All available rooms are shown as the rule added above
does not cater for role=secretary. As above a new rule is added with the conclusion
code %SECT1 and the conditions role=secretary; size=large; close_to=C5-117.
Monika’s case is rerun. Only C5-119 is shown. Monika is assigned C5-119. When
Ulrike’s case is run, C5-119 is suggested as it still had room for another occupant.

Eva I in C5-116 All free rooms are shown. The expert picks room C5-116 and the case features
role=manager; size=small; location=central; close_to = C5-117 as the rule conditions
for the conclusion %MNGR1. Location=central is not strictly necessary since being
close to the Head of Group will guarantee centrality. Close_to C5-119 has not been
selected as a rule conditon. The layout with the tower in C5-118 means that C5-116
and C5-119 are more than two rooms apart. Case is rerun and C5-116 is suggested
and accepted for Eva.

Joachim I in C5-115 All free rooms are shown as there are no rules for Head of Large Projects. A new rule
with the conclusion %HOLP1 and conditions role=Head_of_Large_Project;
size=small; close_to=C5-117 is added. C5-115 and C5-116 are displayed but only
C5-115 is free and is the room suggested. The suggestion is accepted. If C5-113 and
C5-114 are specified as being close to C5-117 then C5-113 would be the suggestion
here. All three HOLP would then be assigned to the three free small rooms but in a
different order.

Hans W. in C5-113 All free rooms are shown as the %HOLP1 rule does not fire since there are no more
small, free rooms close_to C5-117. A new rule is added with the conclusion
%HOLP2 which includes the conditions role=Head_of_Large_Project; size=small.
The %HOLP2 rule fires and rooms C5-113 to 116 are shown. Only C5-113 and 114
are available with C5-113 as the suggestion. The suggestion is accepted.

Katharina N into C5-
114

The %HOLP2 rules fire. C5-114 is suggested and accepted.

Andy K & Uwe T in
C5-120

No rule fires as there are no rules to cover researchers. Rule added %RSCH1 with the
conditions role=researcher, size=large is added. C5-120 - 123 are shown. The first
two are not available. C5-120 is suggested and is assigned to Andy. When Uwe’s case
is run C5-120 is suggested and accepted.

Werner L. & Jurgen L
in C5-121

The researcher rule above fires. All large rooms which do not conflict with the
features of this person are shown including C5-120 (although this is not available).
The expert sees this as an error since it is not suitable to put Werner in a room being
used by smokers. An exception rule is added with the conclusion %RSCH2 and the
condition smoker=no. C5-121 - 123 are shown. The first two are not available. C5-
120 is suggested and is assigned to Andy. When Uwe’s case is run C5-120 is
suggested and accepted.C5-121 is suggested for these two as it is the next free large
room.

Marc. M and Angi W.
into C5-122

C5-122 is suggested for both of them and accepted.

Harry C. and Michael C5-123 is the last free large room and is suggested and accepted.

10

T into C5-123
Katharina Leaves and
Christian comes

Katharina’s case is run. Room C5-114 is right-clicked and Katharina is removed
from this room. Christian’s case is added to the people case file and is run. Since
large rooms are available to suggest, the Find_All_Unalloc function is called and C5-
114 is the only room suggested. Christian is placed in there.

0
8
9
1 0 8 0 %NC000 : 1 = 1
2 1 0 0 %HEAD1 : (ROLE = HEAD_OF_GROUP) & (SIZE = LARGE) & (DESCRIPTION = CENTRAL)
3 1 0 2 %SECT1 : (ROLE = SECRETARY) & (SIZE = LARGE) & (PREV2(CLOSE_TO) = C5_117)
4 1 0 3 %MNGR1 : (ROLE = MANAGER) & (SIZE = SMALL) & (DESCRIPTION = CENTRAL) &
(PREV2(CLOSE_TO) = C5_117)
5 1 0 4 %HOLP1 : (ROLE = HEAD_OF_LARGE_PROJECT) & (SIZE = SMALL) & (PREV(CLOSE_TO) = C5_116)
6 1 0 5 %HOLP2 : (ROLE = HEAD_OF_LARGE_PROJECT) & (SIZE = SMALL) & (CLOSE_TO = C5_117)
7 1 0 6 %RSSM1 : (ROLE = RESEARCHER) & (SMOKER = YES) & (SIZE = LARGE)
8 1 0 7 %RSNS1 : (ROLE = RESEARCHER) & (SMOKER = NO) & (SIZE = LARGE)

Figure 6: The MCRDR KBS for SIS-I Room Allocation.

5 Knowledge Acquisition Approach
RDR were originally developed in response to the observed behaviour of pathology experts. It was apparent
that experts were good at assigning conclusions and that justification for the decision was based on picking
some features of the case (Compton and Jansen 1990). The case provided the context in which the
knowledge applied. There was little modelling of the domain of knowledge. We see the same behaviour in
our room allocation wizard Siggi D. The difference between the classification of a pathology report and the
allocation task is that in allocation the expert needs to deal with two types of cases and is essentially
required to match one case to the other by picking features of both which form the general rules. Rather
than manage two separate KB one for people and another for rooms and using a third to bring these
together (which was the approach used by Gaines 1994), it seemed less complex to treat the problem as a
case which already had the people details but the room details were still unknown. When we think of room
allocation, and as is observed in Siggi D’s behaviour, the focus is on the people and their need to have an
office. We do not care if rooms are left empty. Taking this approach also greatly simplifies the handling of
cornerstone cases. The development of a cornerstone case which is the union of the person and room case
greatly simplifies the addition and validation of new rules as we only have to deal with one current case and
one cornerstone case at a time. The alternative is to associate a room and person case with a particular rule
and then ask the user to differentiate between the current person and room case. This would require dealing
with four cases at a time, changing the existing tool as well as increasing the complexity of the KA
technique. A major benefit of having three KBS in Gaines’ approach was that the knowledge was made
overt, whereas some of our knowledge has become embedded in the functions that were added. The KA
process has been described in the previous section which included our solution. An algorithm for this
process is given below.

While more people need to be allocated a room.
Run the next person-case with empty room slots against the rule base.
Use the conditions from the rule that fires to determine which rooms satisfy the conditions, even if they are

available or not.
The first available room from this list is shown as the suggestion.
If no match based on rules
 A list of available rooms are displayed. The user picks a room from the available set and adds a rule to specify

why that room was appropriate. The user is also free to unallocate a room and select it.
If user agrees with the suggestions, the user picks an available room (which could be the suggestion). The

details of the room are added into the empty slots and the room case is updated as allocated.
If user disagrees with the suggestions, let the user pick a different room and pick features from person/room

cases and create a new cornerstone case for this rule. The features chosen must distingish between the new

11

cornerstone created and the previous cornerstone (at least something different about the person) AND/OR let
the user pick a room they do not think is suitable and enter a rule to specify why it is not appropriate.

If none of the suitable rooms are free
 A list of available rooms are displayed. The user can allocate that room even though it does not satisfy the rule

for that type of person (overdetermined situation) or they can add a new rule to specify why that room was
appropriate. The user is also free to unallocate a room and select it.

5.1 Knowledge Acquisition and Room Allocation without prioritisation
As discussed later in Section 6, earlier solutions found it necessary to prioritise the allocation of resources.
It is highly plausible that experts do allocate resources using priorities and thus such an approach is
appropriate for the nature of the task. However, we were interested in determining whether this was
absolutely necessary for our approach to work. With prioritisation the solution given above did not need to
backtrack. The following transcript shows that it was indeed possible to allocate rooms and acquire the
rules when dealing with the cases in sequential order as given in the documentation in the IJHCS Special
Issue (This is not the same as what is currently shown at the web site). Our main motivation for performing
this exercise is that RDR is an incremental technique designed to acquire knowledge as new cases are
presented and at the same time to keep the existing knowledge valid. What is noticeable is that backtracking
now becomes necessary.

Allocation Action
Werner L in
C5-117.

As no rules have been entered and no rooms have been allocated, all rooms are suggested.
The user may select a room and then take the option to add a rule. The expert adds a rule with
the condition role=researcher and room=large. Reruns the case. All the large rooms are
suggested. User accepts the first room suggested which is C5-117 by double_clicking on it.
When a room is allocated the details of that room are copied into the room slots in the person
case and the persons name is copied into the corresponding room case.

Marc M. in
C5-117

This time the first (and only) rule fires. All the large rooms are displayed and C5-117 is
suggested since there is still space for another person. The user accept this room and puts
Marc M. into C5-117.

Andy L in
C5-119.

Since Andy L. is also a researcher, all large rooms are shown but C5-119 is suggested as C5-
117 is no longer free.

Harry C. in
C5-120

The system again suggests C5-119 because the room is not full. The user is not happy with
that assignment since Andy does not smoke and Harry does. The user adds an exception rule
with the additional condition smoker=yes (whether it is a new or exception rule is not obvious
to the user, they can choose to stop the rule that fired and add a new rule or to replace the
conclusion with a different conclusion which results in an exception rule). The case is rerun.
Only people that receive the same conclusion can be put into the same room. Since, Andy and
Harry now result in different conclusions C5-119 is not suggested as a free alternative. The
room suggested is C5-120. The user accepts this assignment.

Thomas D.
in C5-117.
Werner in
C5-120.
Marc in C5-
121

Since Harry is not just a researcher but is the Head of Group, all free rooms are suggested
since there is no rule for this role. If none of the free rooms are suitable they can select an
already allocated room on the Make screen. A new rule is added choosing the features
role=Head_of_Group, size=large and location=central as the rule conditions. To assist the
user with this task they may select a particular room that they think is suitable and pick
conditions from the person case and the room case. C5-117 and C5-119 are the only large and
central rooms but both of these are taken so a list of free rooms is also shown with C5-121 as
the suggestion (the first free room). The user does not like this suggestion and selects room
C5-117. They take the option to unallocate that room which initialises the room details in the
cases for Werner and Marc and the occupant details in the room case. The room is then
allocated to Thomas. Cases 1 and 2 are rerun. Werner is assigned to room C5-120 with Harry.
The assignment of Harry and Werner or Jurgen and Werner appear to be equivalent as Harry

12

and Jurgen have identical features (the works_with values are converse for one value). Marc
is assigned to room C5-121 which is now the next available large for non-smoking
researchers.

Ulrike U. in
C5-119.
Andy in C5-
122.

All free rooms are suggested as a new rule needs to be added to handle the role of secretary.
The user adds a rule with the features role=secretary, size=large, close_to_=C5-1171. When
the case is rerun, C5-119 is shown together with all other free rooms. The user decides that
C5-119 is the only suitable room and takes the option to unallocate that room. This initialises
the room details in the case for Andy and the occupant details in the room case. The room is
then allocated to Ulrike. Case 3 is rerun. Andy is assigned to the next available large room
C5-122. Andy is not placed with Marc due to the smoker/non-smoker conflict.

Jurgen L in
C5-121.

Jurgen is assigned to room C5-121 with Marc.

Angi W. in
C5-123

Angi is assigned the next available large room C5-123 (C5-122 is not suitable due to Andy’s
smoking).

Michael T.
in C5-123

Michael is assigned room C5-123 with Angi. Even though the Hacker values are different this
is also the case with the experts solution Marc and Angi (9a) and instead of good cooperation
between the RESPECT and KRITON projects we would have good cooperation between the
RESPECT and BABYLON projects. Marc and Michael work with different people but it is
unclear what impact these attributes have on the suitability of the assignment since if they
must be reciprocal as in Marc and Angi’s case then why put Werner and Jurgen together ?

Uwe T. in
C5-122

Uwe is a smoker and is assigned to C5-122 with Harry.

Monika X.
in C5-119

Monika is assigned to C5-119 with Ulrike.

Hans W. in
C5-115

Hans is a Head of Large Project. There is no rule to cover him. A new rule is added with the
conditions role=Head_of_Large_Project, size=small, close_to_C5-117. C5-115 is the first
case found which satisfies this and the expert assigns Hans there.

Eva I. in
C5-116

Eva is a manager so no rule fires and all free rooms are suggested. A new rule is added with
the conditions role=manager, room=small, close_to=C5-117. C5-116 meets this criteria and
is suggested and available. Eva is assigned to this room.

Katharina
N. in C5-
113

There are no room left which satisfy the small and close_to=C5_117 conditions. The list of
available rooms shows C5-113 and C5-114. C5-114 is selected and a rule added with only the
conditions role=Head_of_Large_Project, size=small. Katharina is assigned room C5-114.

Joachim I.
in C5-114

As a Head of Large Project Joachim is assigned room C5-114, the next (and last) available
small room.

Katharina
leaves.

User unassigns Katharina..

Christian I The smoking researcher’s rule fires. None of the large rooms are available so all of the
available rooms are also shown (C5-113 is the only one). Christian is assigned to C5-113. No
rules are added to cover this as it is a violation of the general knowledge.

All people have been assigned, the rules have been acquired and two lots of backtracking were necessary
with this case ordering. With the order of cases given, everyone is assigned in what appears to be suitable
groupings, given the ambiguity of some constraints. No rule has been necessary to handle the different-
project constraint. If the ordering had been different it may have been necessary to add this rule. For
example if Harry had been in room C5-121 at step 7 when Angi was being assigned there would have been
a conflict because they both work on EULISP. To add an exception rule there must be some feature that
distinguishes the two cases from one another. To this end the function same(x): curr(x)=Prev1(x) and
diff(x): curr(x)!Prev1(y); were added to the function list. The user selects the condition
diff(project)=TRUE as the exception rule condition which would trigger checking that the new person was
working on a different project to the person already occupying the room. If not the room was removed from

13

the list of available rooms. With the new condition added, the next room suggested would be C5-123, which
would be a suitable assignment.

5.2 Automatically Generating Domain Ontologies Retrospectively with FCA
Using the technique described in Richards and Compton (1997) it is possible to use the rules in an RDR
KBS (or any propositional KBS) to automatically find formal concepts and produce an abstraction
hierarchy in the form of a concept lattice. The lattice for the rules in Figure 6 are shown below. Each node
is a formal concept made up of a set of attributes and a set of objects. In our use of FCA the rule conditions
are the attributes and the rule conclusions are the objects. Rule conditions belonging to a concept are
reached by ascending paths and conclusions which use those rule conditions are reached by descending
paths. Some of the rule conditions have been shortened for clarity and a rule to cover the different projects
criteria has been added. We can see from the diagram that size of the room and its proximity to the Head of
Group (HO_Group) is a critical factor. We see that researchers, secretaries and the Head of Group are
entitled to large rooms. Managers and Heads_of_Large_Projects (HO_Large_Proj) are entitled to small
rooms. Researchers are also placed on the basis of whether they smoke. If they do not smoke they are
placed according to whether they are working on the different projects. We may be interested in generating
a concept lattice for the purposes of explanation, learning about the domain and for validation of the low-
level model contained in the rules.

Figure 7: An Abstraction Hierarchy of the Rules in Figure 6 using MCRDR/FCA.

6. Comparison to Other Approaches
In this section we review a number of earlier approaches to the SIS-I problem. At the end of this section a
small review is made of the recent solutions from the CG community.

Aussenac-Giles and Matta (1994) were interested in finding an appropriate PSM for this problem but found
that the method in the documentation didn’t urge the KE to describe the task at an abstract level. They use
the MACAO methodology to model and build a system. Although their approach begins with bottom-up
analysis driven by the data, their goal is to build a conceptual model of the expert’s problem solving

14

process. Only once they have a conceptual model do they begin with system implementation. Aussenac-
Giles and Matta (1994) make the point that it is not sufficient to solve the problem at hand but that the goal
must be to produce a general model that can be applied to other resource allocation problems. They make
two further points. Firstly, we don’t have access to the expert to clarify ambiguities relating to the current
set of resources and even more problematic we can’t ask about situations not covered by the protocol.
Secondly, a completely general model that may apply to allocation of other types of resources is difficult to
create as “the role of the target system is missing” p.200 and we don’t know its intended scope or even the
role the user should play. We take the view that the user should always play a major role. Concerning the
scope of the system, we are endeavouring to address a wide range of problem types with one general
purpose inference engine and thus do not limit our system to any domain. Of course, there would generally
need to be some tailoring of the user interface to match the domains as in our case the screens refer to
rooms allocated. Concerning the names of variables used in rules and their generality, this depends on the
naming used in the cases and this would change for cases in each domain. Aussenac-Giles and Matta make
a distinction between the user, expert and knowledge engineer. We don’t really treat any of these roles
differently for KA purposes. In reference to the centrality criterion they state “the system neither calculates
nor evaluates it: Siggi knows that room C5-117 is central” p.202. This is our attitude, as we simply give a
room that value based on Siggi’s determination.

Aussenac-Giles and Matta created rules based on what the expert appears to do. They observed that the
expert ordered who should be assigned first (priority rules), grouped similar people together and allocated
groups at a time (compatabilty rules). For each group they determine the set of possible offices, select one
from the set of possibilities and then assign. This is similar to our approach except that we do not use
priority rules and the rules are not developed by the KE but by the user. Aussenac-Giles and Matta would
like to allow the user to enter rules but have not incorporated this into their system. They are interested in
ensuring that the solution and the method for solving are similar to that provided in the documentation. We
are not interested in how the expert reasons but are focused on their behaviour. They seem to equate the
experts behaviour with his method of reasoning. We would argue that they are not necessarily the same
thing and we make no assumptions as to what reasoning is being performed. Nevertheless it appears that
our KA technique is close to the experts observable behaviour. As they point out their inability to backtrack
means that it is not possible to improve on a solution to find a more optimal allocation of resources.

Balkany, Birmingham and Runkel (1994) use Mechanisms for Knowledge Acquisition (MeKAs) as
reusable components from which to build systems. They see room allocation as a configuration problem
which involves the generation of a solution to match a particular situation. They claim “planning and
scheduling can be solved very efficiently with design problem solvers”. If this is true, then the RDR
approach should be applicable to these types of problems too. The constraints (rules) they create are
specific for a particular person or room. For example, when Katharina leaves they need to remove or
change references to her and update them with Christian’s name. We feel that the use of specific terms will
become problematic as new cases are seen and the maintenance strategy will soon run into trouble. They
develop a set of constraints which are used to determine a violation-level based on the sum of the squares of
the distance between people. They use a table of distances between rooms.

Gaines’ (1994) solution was based on the desire to demonstrate that heuristic classification was adequate
for such a task and that it could be achieved using a term subsumption classification system together with
the intervention of a human for problems that were overdetermined or underdetermined. The solution uses a
situated action approach where “the resultant actions so change the situation that the sequence of behaviour
can appear quite complex although it is conceptually based on the repetition of a single decision process
without look-ahead or planning” (p. 243). As described we also hold such a view and our solution could
also be achieved using a classification PSM. Gaines (1994) developed three classification systems one for
people, one for rooms and another that allocated people to rooms based on an agenda of recommendations.

15

His term subsumption Visual Language tool was used to specify the domain ontology, the PSM, the facts
and the rules making the knowledge and data structures natural, explicit and easily modifiable. The ability
to specify and represent these knowledge structures using a visual representation. and the use of heuristic
classification make this approach unique to the other approaches except for Spirgi and Wenger (1994) who
made use of Gaines’ solution in their own. Other strengths of the approach include its support of
incremental problem solving, user involvement for difficult problems and the approach is generic. Gaines
solution does offer backtracking but it was not required with the given set of cases as the agenda rules
prioritised the order in which people are assigned.

Karbach, Voß and Drouven (1994) initially tried to use ASSIGN which was built for assignment problems
using Model-K, a language for implementing KADS conceptual models. However they found that they
couldn’t determine insolvable problems. To overcome the problems associated with the under or
overdetermination of resources they have added a reflective problem solver that sits on top. They take a
very similar approach as we have done and treat the assignment problem as a configuration type of
problem. They also view the system as a support to the expert not a replacement or a replica. Their generic
system for assignment includes: components, assignment slots to which a component can be assigned, an
initial assignment and a set of conditions. Like in our approach they treated the employee as the component
with room assignment slots that are filled in during inferencing. They state “Like Siggi D., human experts
concentrate on a single assignment, which they incrementally extend or modify” p.274. They chose to
provide the expert with a number of “solutions that conformed to the criteria he was willing to formulate
and to have him select among them the one that best fits his implicit criteria” p.275. We have the same view
of expertise and our approach is very similar. It was a simple task for us to build a system which provides a
list of possible room from which the expert can select.

The bigger problem was how to handle what Karbach, Voβ and Drouven call the implicit criteria. We
wanted to use the cases to draw out what this criteria might be. They use the technique of constraint
satisfaction where they match generic requirements to obtain concrete conditions. They added a variable
“available” which becomes a precondition which is similar to our use of the occupant field to determine
what rooms are still free. After making the assignment they use REFLECT to assess the results of the
problem solver. There were a number of reflective modules but the one of greatest interest to us is COMIC
which breaks overly complex problems into smaller chunks that are solved by stepwise revising previously
found partial solutions. They added the values Head of Group and Head of Large Project as possible values
for the Role attribute. They felt that the synergy condition constraint could not be determined from the
available data and they replaced the works-with, hacker, and project attributes with a synergy attribute. We
did not wish to interfere with the available data. They introduce the conditions same-room and different-
room to indicate who should or should not share a room. As we observed, they found the size of the room to
be sufficient information to determine what rooms can be used for sharing. They rank employees by their
roles which are used to determine in what order resources should be allocated. Their technique found a
solution but it did not match that of the experts due to the synergy problem and its poor specification. They
point out that it is not clear if everyone may potentially move if Katharina leaves or if only the offices still
plus Katharina’s is available for use by Christian.

In their approach “the system produces all solutions for a given problem rather than following one path in
the search space” (Karbach, Voß and Drouven 1994, p.289). Similarly, MCRDR does not pick one branch
to explore but considers all true branches. All branches, however, may not be offered as solutions
depending on the conclusion strategy adopted. For example, in configuration RDR conflicting conclusions
are discarded. Karbach, Voß and Drouven (1994) believe that experts are more likely to pick a path and
continue to explore that until it either succeeds or another path must be chosen. Their system, therefore,
assists the experts in considering a range of options before heading down one path. Despite the similarity
between this solution and ours in terms of the view of expertise and the approach taken the main difference

16

is the role of modelling. They consider modelling of the PSM, meta-activities and the domain. We
essentially went straight from the domain model provided in the cases to produce an operationalisation.
They close with “office allocation problems are highly situation-dependent, especially when making
compromises” p.290. They note that experts tend to adapt previously seen cases and they see the
incorporation of such cases as an aid in the “systematic development of problem solving models” p.290.
Our acceptance of the value and role of cases and the importance of context has been presented earler.

Klinker et al (1994) have used the Spark, Burn, Firefighter (SBF) framework for this problem. The goal of
SBF is to “make programming easier” and to “exploit a problem description that represents the real-world
workplace” (p.293). They see KA as something that “happens throughout the life cycle of application
programs” p.312. As with the previous approaches, there is an emphasis on the situatedness or context of
the problem which will determine the meaning of the task. Contexts can be described using Spark in terms
of activities, resources, results and agents. Spark assumes that many interdependent activities exist in a
workplace which can all be automated and that automation should be introduced gradually. Burn fits the
mechanisms to the workplace and Firefighter coordinates and manages the workplace activities. As in our
approach, they do not attempt to imitate Siggi D but they focus on the functionality of the system. Due to
their strong commitment to building workplace situated systems they sought to fill in missing system
requirements using experts in room allocation in their own organisation. The emphasis on the workplace is
a feature we commend. In RDR we use cases to ground the knowledge and the simplicity of KA allows it to
be tailored to the local environment, but due to our minimal analysis approach we do not make any attempt
to describe the workplace in which the system will be used. Burn involves the reuse of previously developed
mechanisms similar to the use of MeKAs (Balkany, Birmingham and Runkel 1994). Burn is used to map
mechanisms to the activities identified in Spark using a glossary of terms to identify similar activities. The
closest mechanism they found was one used for creating schedules. This mechanism needed to be
customised for the room allocation problem and a new interface needed to be developed. The new
mechanism is specific to room allocation and it would be up to the developer to decide if it was worthwhile
to create a more general resource allocation mechanism based on the create schedule and assign room
mechanisms. Klinker et al had to change their constraints to handle the second problem. While they see their
workplace modelling approach as similar to KADS organisation and application modelling they see
themselves as more focused on analysis and the KADS approach as more focused on design. We share their
emphasis on context and expert-like results rather than trying to simulate the experts reasoning process.
However, we minimise and avoid extensive analysis.

Motta, O’Hara and Shadbolt (1994) offer another reuse approach based on the generalised descriptive
model (GDM) methodology and the VITAL knowledge engineering methodology. The GDMs are used to
guide the KA process by assisting in the selection of an appropriate task model, identification of the
necessary domain knowledge and structuring of the knowledge base. VITAL delivers a requirements
specification, conceptual model, design model and executable code. One of the requirements is that the
system “will be a cognitive model of Siggi the Wizzard, rather then simply a system which solves the
problem. They view room allocation as a synthesis problem where the solution is constructed out of
solution components. (look at ALTO hierarchy can we produce with FCA -yes). They made use of the KA
tool workbench, KEW, to assist with analysis and structuring of the domain. The tools included cards sorts,
laddered grids, repertory grids and a similarity based machine learning algorithm.

They chose an off-the-shelf propose and revise PSM which they needed to tailor. They found it necessary to
process each person according to their role in the following order: head of group, secretary, manager, head
of project and research staff. They also have added an allocated attribute and they use a counter to keep
track of the person they are up to. Using the various analysis tools to understand the domain and the
problem, they develop “by hand” the constraints on the assignments for each role. Like us, they include
rooms that are one room apart in their definition of close_to. They point out that there are some hidden

17

constraints such as the one that puts Heads of Large Projects into small rooms even though the expert does
not mention this requirement. Perhaps, the real constraint is that the Heads get a room of their own and
since the large rooms are needed for researchers who are not entitled to their own room, they are allocated
the smaller rooms. If this is the process, that would indicate some backtracking on the part of the expert.
They compute distances between rooms to determine the closeness of rooms. They did not use the
works_with attribute. The use of the hacker attribute is found to be problematic and inconsistent. We also
ignored the hacker attribute as it was unclear how it was to be used.
The conceptual model they develop is used as the first pass of the design model as they use the same
language for analysis and design. On implementation they discovered a problem with their conceptual
model and they comment that “this suggests the utility of having operational knowledge-level models”
(p.345). The RDR approach does result in an operationalised model but perhaps lacks the necessary
abstract models to qualify as a knowledge-level model. The FCA concept lattice to some extent addresses
this problem. They have some rules which are specified to run once and others that should be tried
repeatedly. Rule ordering is also important for the system functionality. The solution is generated as a batch
process and no backtracking is allowed. This results in an inflexible solution and one that does not include
the user in the design model. They comment that in the approach, expansion of the GDM is time-consuming
with minimal time spent on acquiring domain knowledge at the beginning but this situation reverses as the
cycles progress. KA and analysis times remain constant using RDR.

Schreiber (1994) used the KADS approach to develop a model of expertise, which is a conceptual model
independent of the implementation and design model which defines how it will be implemented. He was
interested in building a system that mimics the expert’s reasoning and is concerned with more than
achieving the same or similar results. Top-down model construction is undertaken. Schreiber finds the
protocol to be incomplete and that there are many points that need clarification with the expert (KE goal).
Based on the protocol, he observes a number of features of the experts problem-solving process. He sees the
task requiring synthesis where the solution must be constructed rather than selected from a set of predefined
solutions. He breaks the process into two steps: select a case and assign a room. He sees that the expert
orders types of employees, not specific employees. The allocations are also in groups and not for specific
employees. He also finds that the expert does not backtrack. Schreiber notes that most synthesis problem
solvers use a verify/revise step and is unsure whether the lack of backtracking was a feature peculiar to this
data.

To build a domain schema a data description language is used. Using Puppe’s (1990) classification of
routine design tasks, Schreiber identifies this problem as an allocation task rather than a planning or
configuration problem. Allocation tasks involve two or more disjunct sets of objects and the development of
allocation relations which specify which objects belong together. Schreiber is able to achieve such a match
using the propose step without the need for the verify and revise steps. It appears that a key factor which
allows propose to solve this problem is the ordering of requirements and the execution of inferences. He
notes that “in a pure constraint-satisfaction approach the idea of grouping will usually not be considered
and will also not be easy to include” p.376. In accordance with the observed behaviour of the expert, the
employees are grouped and then assigned by group. Hard and soft constraints are defined to handle such
things a smoking or working on different projects (hard constraints) and hacking or works-with (soft
constraint). He interprets working on different projects or working on similar subjects as means of creating
synergy. The solution does not allow interaction with the user but a trace is provided for review afterwards.
The KADS approach, in contrast to the Generic Task approach, does not make explicit the task knowledge
description and the inferences (methods) are not domain specific

Allemang (1992) commences his solution with an indepth knowledge level analysis of the nature of the
problem to be solved. He selects the Design Task and the Propose, Critique and Modify (PCM) method
from the Generic Task set of resusable PSMs. It is interesting that he comments “it is not in general

18

possible to construct a knowledge level analysis of expert performance from a program that solves a
problem” (p.8). The use of FCA to produce and analyse a model of the knowledge based on the executable
system may offer an counterexample to this generalisation. The problem is decomposed into the subtasks
propose, verify, critique and modify. Allemang states that “a problem solving model is important not only
to organise the knowledge that is available, but also to organise questions to direct to the expert” (p.13). We
have found that development of a simple model by the expert in the form of a rule-based system is useful in
identifying inconsistencies in expert assignments and forces the expert to reevaluate and modify their
knowledge. The simple model does not include problem solving knowledge. A key benefit is that the KE
does not need to be involved and the modification is made at the implementation level. As Allemang notes,
the GT approach is too complex to be used by the expert. It appears that no tool was available to implement
the solution although parts of it could have used the DSPL system.

Reference Tool/Method Type of PSM Develops
detailed
model/
Analysis
intensive

Match
experts
reason-
ing
process

Situated
view of
Know-
ledge

User
involved

backtracking
supported/
incremental
technique

Allemang GTs no tool design yes yes no yes
Aussenac MACAO develop to suit

task
yes yes No but

would
like

no

Balkany reusable
MeKAs

configuration-
design

yes

Gaines KSSn classification yes no yes yes yes
Karbach Model-K,

REFLECT
allocation
specific PSM

yes no yes yes yes

Klinker SBF scheduling/
allocation

yes no yes yes

Motta GDM/
VITAL

Propose and
revise

yes yes no no

Richards RDR classification no no yes yes yes
Schreiber KADS propose yes yes no yes
Spirgi EMA + VL

and GA
configuration yes yes

Table 1:A Comparison of Approaches to the SIS-I Room Allocation Problem.

Spirgi and Wenger (1994) use the Executable Methodology for knowledge-based Applications (EMA)
which is based on the object-oriented, data-driven and effect-oriented paradigms. The implementation uses a
combination of Gaines’ visual language and a genetic algorithm as the problem solving methods. Like the
other solutions, it is a building block approach but one more heavily focused on the role of the user. To
handle centrality of a room they build an agent which uses the sum of distances between nodes. KA
involves first selecting the members to assign. The user can modify member attributes. They then choose to
assign all members of the head-of-group, secretary, manager and project-leader groups using the
Conceptual Generic - Technique (CG-TEC) CONF-CLASS which is based on Gaines’ classification
solution and then to assign the rest using the CG-TEC CONF-GLOB based on a genetic algorithm. They
make the point that information is dominant over processing. We agree and use such an argument to
question whether specialised PSMs are necessary if domain knowledge can be acquired to overcome
limitations of the PSM.

Due to space limitations and the lateness of the availability of the CG solutions, the following review will
briefly cover the five solutions published in the latest proceedings of the Seventh International Conference

19

on Conceptual Structures (ICCS'99). The problem was generally seen as one of constraint satisfaction and
ordering which were represented as CGs. Thanitsukkarn and Finkelstein (1999) sought to apply the
Viewpoints framework more commonly used in the area of requirements engineering and in so doing altered
the nature of the problem into one of partitioning and organising perspectives. As part of their solution they
used a CG meta-representation language which uses CGs as a bridge between the logic-based rules and the
natural language descriptive model. Damianova and Toutanova (1999) built a theoretical model using type
hierarchies and CGs. Martin and Eklund's (1999) solution was quite different in that it was Web based and
they found that despite having experience with KA and CGs "the Sisyphus-I problem was not a knowledge
acquisition problem (we did not follow a methodology or reuse an ontology) but a programming problem"
(p.331). To some extent this was our finding since features such as backtracking were not required if rule
or constraint ordering was used and even when backtracking was used it was easiest to implement this as a
function. Mineau (1999) did not take this approach at all and preferred to use a set of prioritized goals
represented by CGs to allow the system to explore the solution space on its own. This approach avoided
having to say how to solve the problem, made the solution less dependent on the resolution method, allowed
generation of explanations, provided a more comprehensible representation and reduced the demands on the
KE while more easily supporting KE intervention. Like Gaines, Mineau treated the problem as one of
classification by using a subsumption hierarchy of CGs. Baget, Genest and Mugnier (1999) exploited the
graph-theoretic qualities of CGs to produce a pure graph-based solution which was quite similar to the
approach of Damianova and Toutanova. The graphs (CGs) provided a declarative formal model which
supported rules, constraints and projection. Their solution was generic and entirely automatic using a
prototype known as CoGITaNT.

With the exception of Martin and Eklund, there were a number of common threads. CGs were found to be
invaluable in their intuitiveness, visual descriptiveness and communication power. The models built were
sound, complete and simple but tended to be computationally expensive. Each found the testbed to be useful
although a little too underspecified and lacking a clear method of evaluation. Two aspects of the solutions
are particularly noteworthy. Firstly, where the development time is stated, the solutions took no more than
10 days. Secondly, even though models were build using CGs it appears that the modelling task is far less
labour intensive in comparison to many of the modelling techniques used in KA. CGs are commonly viewed
as slow to develop, however, their simplicity and precision seem to compensate for the amount of detail
needed. There is also very little emphasis on finding a satisfactory problem solving method. The emphasis is
on the representation of the domain rules and facts which is similar to the RDR emphasis on the importance
of domain knowledge.

7 Concluding Remarks
A number of desirable criteria were described in Sections 2 and 3 and we now review if they have been met.
In keeping with criteria 1 we have used the MCRDR knowledge representation, a simple KA technique
based on cases and cornerstone cases and our existing coarse-grained to provide a solution with minimal
analysis of the domain. To handle two set of cases and the tracking and allocation of resources we needed to
add extra functions and make small modification to two screens in our existing tool. In keeping with criteria
2 we kept our solution based on the documentation provided by using the people and room data as cases
and the protocol as our source of expertise. We were able to solve the second problem with no changes
required to our system.

In section 1 we had some higher goals relating to the nature of the problem and the use of PSMs. Our
solution indicates that RDR can handle resource allocation problems. We found that we could solve this
particular problem using an inference engine that simply traverses the KBS using the features in a case to
find conclusions. The true pathway/s are then separated into room and people conditions which were used
to find a set of rooms that satisfied the conditions and to ensure that those rooms did not already contain

20

people that violated the people compatibility constraints. We could have also used a similar solution to that
of Gaines (1994) using three individual KBS which may have made the knowledge more overt but this
meant greater changes to our tool and to our KA approach. From the point of view of the user, KA is the
same for classification, configuration or resource allocation, the only difference being the actual allocation
or unallocation task in the latter. Most of the approaches advocated the use of some variation of a Propose,
Verify and Revise PSM where a local search is first performed (propose), the result is evaluated (verify)
followed by moving to another part of the search space (revise). Different knowledge is used in each stage.
Gaines solution using heuristic classification requires abstraction followed by refinement. The general
purpose RDR PSM has no refinement step and requires no understanding of the internal structure of the
knowledge which is why we can leave KA and maintenance to the user. As was found in RDR approach to
configuration, a simple general inference engine appears to be adequate if sufficient domain knowledge can
be supplied to overcome limitations in reasoning power.

RDR offer a greatly simplified method of building and maintaining knowledge-based systems for
classification tasks. For example, knowledge acquisition times of ~1 minute per rule have been documented
for 7000 rule systems using a commercial RDR tool (unpublished results, Pacific Knowledge Systems).
However the constant question for RDR is whether it can be extended to a wider range of problem types. At
the last Banff workshop, the application of RDR to configuration tasks was presented, and this present
paper is an attempt to take this further to resource allocation tasks. This work has also prompted us to
consider taking RDR beyond propositional knowledge to a first order representation. We feel that such a
direction will be the basis for a general RDR solution.

Acknowledgements
RDR research is supported by grants from the Australian Research Council.
Bibliography
Allemang, D. (1992) Modelling a Configuration Problem with Generic Tasks In M. Linster and B. Gaines. (eds) Proceedings of
European Knowledge Acquisition Workshop (EKAW’91), GMD-Studien Nr 211, Sept. 1992.
Baget, J.F., Genest, D. and Mugnier, M.L. (1999) A Pure Graph-Based Solution to the SCG-1 Initiative In William Tepfenhart
and Walling Cyre (eds), Conceptual Structures: Standards and Practices, Proceedings of the Seventh International Conference
on Conceptual Structures (ICCS'99), July 12-15, Blacksburg, VA, USA, Lecture Notes in Artificial Intelligence, Springer-
Verlag, Number 1640, Berlin, 355-376.
Balkany, A., Birmingham, W. P. and Runkel, J. (1994) Solving Sisyphus by Design International Journal of Human-Computer
Studies 40(2):221-242.
Compton, P. and Jansen, R., (1990) A Philosophical Basis for Knowledge Acquisition. Knowledge Acquisition 2:241-257.
Damianova, S. and Toutanova, K. (1999) Using Conceptual Graphs to Solve a Resource Allocation Task In William Tepfenhart
and Walling Cyre (eds), Conceptual Structures: Standards and Practices, Proceedings of the Seventh International Conference
on Conceptual Structures (ICCS'99), July 12-15, Blacksburg, VA, USA, Lecture Notes in Artificial Intelligence, Springer-
Verlag, Number 1640, Berlin, 297-314.
Gaines, B.R.. (1994) A Situated Classification Solution of a Resource Allocation Task Represented in a Visual Language
International Journal of Human-Computer Studies 40(2):243-272.
Kang, B. (1996) Validating Knowledge Acquisition: Multiple Classification Ripple Down Rules PhD Thesis, School of
Computer Science and Engineering, University of NSW, Australia.
Karbach, W.L., Voβ, A. W. and Drouven, U. (1994) Solving the Office Allocation Task in Reflective ASSIGN International
Journal of Human-Computer Studies 40(2):.273-292
Klinker, G. Linster, M., Marques, D., McDermott, J. and Yost, G.. (1994) Exploiting Problem Description to Provide
Assistance with the Sisyphus Task International Journal of Human-Computer Studies 40(2):293-314.
Martin, P. and Eklund, P. (1999) WebKB and the Sisyphus-I Problem In William Tepfenhart and Walling Cyre (eds),
Conceptual Structures: Standards and Practices, Proceedings of the Seventh International Conference on Conceptual
Structures (ICCS'99), July 12-15, Blacksburg, VA, USA, Lecture Notes in Artificial Intelligence, Springer-Verlag, Number
1640, Berlin, 315-333.
Mineau, G. (1999) Constraints and Goals under the Conceptual Graph Formalism: One Way to Solve the SCG-1 Problem In
William Tepfenhart and Walling Cyre (eds), Conceptual Structures: Standards and Practices, Proceedings of the Seventh
International Conference on Conceptual Structures (ICCS'99), July 12-15, Blacksburg, VA, USA, Lecture Notes in Artificial
Intelligence, Springer-Verlag, Number 1640, Berlin, 334-354.

21

Motta, E. O’Hara, K. and Shadbolt, N. (1994) Grounding GDMs: A Structured Case Study International Journal of Human-
Computer Studies 40(2):315-348.
Richards, D. and Compton, P. (1997) Knowledge Acquisition First, Modelling Later, In Enric Plaza and Richard Benjamins
(eds), Knowledge Acquisition, Modeling and Management. 10th European Workshop, EKAW’97, Lecture Notes in Artificial
Intelligence 1319, Springer-Verlag, 237-252.
Schreiber, A. Th. (1994) Applying KADS to the Office Assignment Problem International Journal of Human-Computer Studies
40(2):349-378.
Spirgi, S. and Wenger, D. (1994) Sisyphus Project: EMA Approach International Journal of Human-Computer Studies
40(2):379-402.
Thanitsukkarn, T and Finkelstein, A. (1999) Multiperspective Analysis of the Sisyphus-I Room Allocation Task Modelled in a
CG Meta-Representation Language In William Tepfenhart and Walling Cyre (eds), Conceptual Structures: Standards and
Practices, Proceedings of the Seventh International Conference on Conceptual Structures (ICCS'99), July 12-15, Blacksburg,
VA, USA, Lecture Notes in Artificial Intelligence, Springer-Verlag, Number 1640, Berlin, 272-296.
Wille, R. (1982) Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts In I. Rival (ed), Ordered Sets
Reidel, Dordrecht, Boston, 445-470.

