

Combining Cases and Rules to Provide
Contextualised Knowledge Based Systems

Debbie Richards

Department of Computing,
Division of Information and Communication Sciences,

Macquarie University, Sydney
richards@ics.mq.edu.au

Abstract: Providing contextualised knowledge often involves the difficult and time-
consuming task of specifying the appropriate contexts in which the knowledge
applies. This paper describes the Ripple Down Rules (RDR) knowledge acquisition
and representation technique which does not attempt to define up front the possible
context/s. Instead cases and the exception structure provide the context and rules
provide the index by which to retrieve the case/s. KA is incremental. The domain
expert locally patches rules as new cases are seen. Thus, RDR is a hybrid case-based
and rule-based approach. The use of Formal Concept Analysis to translate the RDR
performance system into a formal context and uncover an explanation system in the
form of an abstraction hierarchy further strengthens our emphasis on the combined
use of cases and rules to provide contextualised knowledge.

1. The Role of Context in Knowledge Based Systems
The issue of context has been recognized as an important factor in the reuse and
sharing of knowledge (e.g. [1,14]). A situated view of knowledge places even greater
emphasis on the role of context [2]. Situated cognition involves taking into account
interaction between the individual’s inner state and the external environment and
trying to record all the influencing factors. However, specification of the context in
which the knowledge applies is difficult, time consuming and error-prone. The
knowledge acquisition and representation technique described in this paper, known as
ripple-down rules (RDR) avoids the need for complete specification as our goal is not
to build global rules or large-scale common ontologies but to capture local
contextualised knowledge from which we can retrospectively generate domain-
specific ontologies.

2. What are Ripple Down Rules ?
RDR is a hybrid case-based and rule-based approach. RDR are developed online and
incrementally by the domain expert who is responsible for knowledge acquisition
(KA), validation and maintenance, which are indistinguishable from one another in
the approach. KA proceeds as follows. The expert performs an inference on a case. If
they disagree with the conclusion given they specify the correct conclusion and pick
some features in the case to justify the new conclusion. These features must
differentiate the current case from the case associated with the rule that misfired [5].
The new rule is added as an exception.

RDR non-monotonically reasons over a list of ordered rules with exceptions. RDR
belong to a class of representation schemes that provide modularity through the use of
exceptions. While this class includes other approaches, RDR are ‘the most general for
attribute-value based representations and most strongly structured” [18, 279]. Interest
in exception structures is due to a number of factors including: the naturalness and
comprehensibility of the representation by human experts; the support they offer for
incremental change; the use of context and maintainability of the knowledge due to
localization of changes [7,13]. Exceptions also provide a compact representation and

accounts for the use of exceptions as output structures for some machine learners
[19]. The cases and exception structure work together to provide the context.

The approach seeks to draw on the benefits of cases and rule-based systems but
avoid the limitations. Rule based systems do not provide context or grounding in the
real world. CBR suffers from the indexing problem associated with retrieving
appropriate cases and deciding how best to adapt cases. The use of cases in RDR is
similar to the use of cases in CBR. Cases are used to:
• assist the user to develop rules,
• provide the appropriate context of the new rule being entered through storage of

cornerstone case (the case that prompted a rule to be added) and
• validate the entered rule by ensuring the current case is differentiated from other

cases associated with the incorrect rule.
When the expert picks the salient features in the case (which form the rule

conditions) they are in effect selecting the index by which to retrieve the case. The
creation of indexes is one of the major problems in CBR because most approaches try
to generate these automatically to some extent. Getting the expert to provide this
index as a natural part of their duties substantially simplifies the task. The way that a
Ripple-Down rule is used to differentiate between cases combines the approaches of
difference and checklist-based indexing and the failure-driven nature of learning in
RDR makes it similar to explanation-based indexing. See [12] for description of these
three main approaches to indexing cases. While RDR does place importance on the
role of cases, each case provides a local context and there is no attempt to define
generally applicable rules or landmark cases. CBR techniques usually try to identify
important cases that are used to classify new cases.

RDR were first developed to handle single classification tasks. An exception
structure in the form of a binary tree with true and false branches is used to provide
rule pathways, see an example in Figure. We have developed multiple classification
RDR (MCRDR) to handle classification tasks where multiple independent
classifications are required [10,11]. The method builds n-ary trees and consists only
of exception branches. A better description may be sets of decision lists joined by
exceptions. In contrast to single classification RDR all rules attached to true parents
are evaluated against the data. An MCRDR is defined as the quadruple <rule,P,C,S>,
where P is the parent rule, C are the children/exception rules and S are the sibling
rules within the same level of decision list. Every rule in the first list is evaluated. If a
rule evaluates to false then no further lists attached to that rule are examined. If a rule
evaluates to true all rules in the next list are tested. The list of every true rule is
processed in this way. The last true rule on each path constitutes the conclusions
given. Current empirical evaluations of a commercial system using MCRDR have
shown that experts can build systems with 3- 4,000 rules in about one person week.
Even KBS with 7,000 rules do not suffer from maintenance problems. Thus the RDR
approach is not only rapid but also highly scalable. Simulation studies [10] have
shown MCRDR to be a superior representation to the original RDR structure by
producing knowledge bases that mature more quickly and are more compact even for
single classification domains. It is conjectured that this occurs because more use is
made of expertise rather than depending on the knowledge base structure [11]. The
simulation studies showed that although the order of cases seen and the quality of the
cases (stereotypical or landmark cases can be viewed as higher quality) will affect the
compactness of the knowledge base and how quickly it matures, a similar and equally
effective set of rules will be developed regardless of the order or nature of the cases.

We have recently applied ideas from Formal Concept Analysis (FCA) [20] to
MCRDR so that the implicit concepts, both primitive and more abstract, in an
MCRDR assertional KBS can be found and structured into a terminological KBS. The

RDR assertions provide a performance system and the concept lattice derived using
FCA provides an explanation system. This enhancement is important as minimal
analysis of domain knowledge was a strength of the KA technique but it meant that it
was not possible to show higher level models of the domain knowledge. The
abstraction hierarchy that FCA automatically develops offers a retrospective model
that is based on the MCRDR rules. While the MCRDR approach does not require a
model for KA or inferencing we are interested in providing the user with a model
since models can assist instruction [17] and explanation [3].

3. Discussion and Conclusion
Providing contextual knowledge to the user is a high priority in the RDR approach.
Cases, the exception structure and local patching have made it possible to offer
contextualised explanations and KA, detection of erroneous or missing knowledge; a
critique of the user’s plan in the form of an explanation of the system’s plan; and
increased depth of knowledge by showing abstracted concepts not obvious directly
from the rule pathways. The FCA option also provides the structure of the knowledge
by showing the sub, super and matching concepts.

Others (e.g. [4, 9]) have found the combination of rule-based and case-based
reasoning to be beneficial. In [4] C5 is used initially to classify the cases and a
typicality measure is used next to rank the cases. The use of a similarity measure is
seen to provide global knowledge based on all the cases whereas the C5 rules
generate more local knowledge. [9] also applies rules to get a first approximation
and then uses cases when an exception to the rules is seen to be compellingly
similar. They see that the use of cases can overcome deficiencies in the rule set. As
we found, cases are often more readily available and easier to acquire than rules.
However, our combined use of cases and rules is a little more holistic in that the
relationship between cases and rules are more intertwined. Our rules are developed
based on cases which are then stored with that rule and used in further knowledge
maintenance. In the other two approaches cases are used as a second step to
supplement the rule-based knowledge.

Mainstream KBS research is focused on knowledge level modelling [15] and the
use of ontologies to assist development of these models. Kolodner [12] argues that

Figure 1: A rule trace in single classification RDR

in domains where models are not well understood, that is causal knowledge is not
known, cases can be used to capture knowledge about the domain. We go further
and argue that models by their very nature are problematic [3, 8,], both in their
definition and validation, and that cases can be useful to alleviate these problems.
By letting the domain expert run cases and assign conclusion/s, which is what they
are expert at, we easily and rapidly capture a performance system with minimal a
priori analysis of the domain. By translating the rules into a formal context we can
use FCA to uncover an explanation system in the form of an abstraction hierarchy.
Thus the user is able to capture, validate, apply, manipulate and explore
contextualised knowledge through the combined use of rules and cases.

Bibliography
[1] Chandrasekaran, B. and Johnson, T. (1993) Generic Tasks and Task Structures In David,

J.M., Krivine, J.-P. and Simmons, R. (eds), Second Generation Expert Systems Springer,
Berlin, 232-272.

[2] Clancey, W.J., (1992) Model Construction Operators Artificial Intelligence 53:1-115.
[3] Clancey, W.J., (1993) Situated Action: A Neurological Interpretation Response to Vera

and Simon Cognitive Science, 17: 87-116.
[4] Coenen, F, Swinnen, G., Vanhoof, K., and Wets, G. (1999) The Improvement of Response

Modelling: Combining Rule-Induction and Case-Based Reasoning In J. Zytkow & J.
Rauch (eds) Principles of Data Mining and Knowledge Discovery, 3rd European
Conference, PKDD’99, Prague, Lecture Notes in AI, Vol 1704, Springer, 301-308.

[5] Compton, P. and Jansen, R., (1990) A Philosophical Basis for Knowledge Acquisition.
Knowledge Acquisition 2:241-257.

[6] Compton, P., Preston, P. and Kang, B. (1995) The Use of Simulated Experts in Evaluating
Knowledge Acquisition, Proceedings 9th Banff Knowledge Acquisition for Knowledge
Based Systems Workshop Banff. Feb 26 - March 3 1995, Vol 1:12.1-12.18.

[7] Gaines, B.R., (1991) Induction and Visualization of Rules with Exceptions In J. Boose &
B. Gaines (eds), Proceedings of the 6th Banff AAAI Knowledge Acquisition for
Knowledge-Based Systems Workshop. Banff, Canada,Vol 1: 7.1-7.17.

[8] Gaines, B. R. and Shaw, M.L.G. (1989) Comparing the Conceptual Systems of Experts
The 11th International Joint Conference on Artificial Intelligence, 633-638.

[9] Golding, A. and Rosenbloom, P. (1991) Improving Rule-Based Systems through Case-
Based Reasoning In Proceedings of AAAI’91, Anaheim, CA.

[10] Kang, B. (1996) Validating Knowledge Acquisition: Multiple Classification Ripple Down
Rules PhD Paper, School of Computer Science and Engineering, University of NSW,
Australia.

[11] Kang, B., Compton, P. and Preston, P. (1995) Multiple Classification Ripple Down Rules:
Evaluation and Possibilities Proceedings 9th Banff Knowledge Acquisition for Knowledge
Based Systems Workshop Banff. Feb 26 - March 3 1995, Vol 1: 17.1-17.20.

[12] Kolodner, Janet (1993) Case-Based Reasoning Morgan Kaufman Publishers Inc., CA.
[13] Li, X. (1991) What’s so bad about rule-based programming ? IEEE S/W, Sept., 103-105.
[14] McCarthy, J. (1991) Notes on Formalizing Context Technical Report. Computer Science

Department, Stanford University.
[15] Newell, A. (1982) The Knowledge Level Artificial Intelligence 18:87-127.
[16] Richards, D and Compton, P, (1997) Combining Formal Concept Analysis and Ripple

Down Rules to Support the Reuse of Knowledge Proceedings Software Engineering
Knowledge Engineering SEKE’97, Madrid 18-20 June 1997, 177-184.

[17] Schon, D.A. (1987) Educating the Reflective Practitioner Jossey-Bass, San Francisco, CA.
[18] Scheffer, T. (1996) Algebraic Foundation and Improved Methods of Induction of Ripple

Down Rules Repetition In Compton, P., Mizoguchi, R., Motoda, H. and Menzies, T. (eds)
Proceedings of Pacific Knowledge Acquisition Workshop PKAW’96, October 23-25 1996,
Coogee, Australia, 279-292.

[19] Vere, S. A. (1980) Multilevel Counterfactuals for Generalizations of Relational Concepts
and Productions Artificial Intelligence 14:139-164.

[20] Wille, R. (1982) Restructuring Lattice Theory: An Approach Based on Hierarchies of
Concepts In I. Rival (ed), Ordered Sets Reidel, Dordrecht, Boston, 445-470.

