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Abstract: Providing contextualised knowledge often involves the difficult and time-
consuming task of specifying the appropriate contexts in which the knowledge 
applies. This paper describes the Ripple Down Rules (RDR) knowledge acquisition 
and representation technique which does not attempt to define up front the possible 
context/s. Instead cases and the exception structure provide the context and rules 
provide the index by which to retrieve the case/s. KA is incremental. The domain 
expert locally patches rules as new cases are seen. Thus, RDR is a hybrid case-based 
and rule-based approach. The use of Formal Concept Analysis to translate the RDR 
performance system into a formal context and uncover an explanation system in the 
form of an abstraction hierarchy further strengthens our emphasis on the combined 
use of cases and rules to provide contextualised knowledge.  

1.  The Role of Context in Knowledge Based Systems 
The issue of context has been recognized as an important factor in the reuse and 
sharing of knowledge (e.g. [1,14]). A situated view of knowledge places even greater 
emphasis on the role of context [2]. Situated cognition involves taking into account 
interaction between the individual’s inner state and the external environment and 
trying to record all the influencing factors. However, specification of the context in 
which the knowledge applies is difficult, time consuming and error-prone. The 
knowledge acquisition and representation technique described in this paper, known as 
ripple-down rules (RDR) avoids the need for complete specification as our goal is not 
to build global rules or large-scale common ontologies but to capture local 
contextualised knowledge from which we can retrospectively generate domain-
specific ontologies.  
 
2.  What are Ripple Down Rules ? 
RDR is a hybrid case-based and rule-based approach. RDR are developed online and 
incrementally by the domain expert who is responsible for knowledge acquisition 
(KA), validation and maintenance, which are indistinguishable from one another in 
the approach. KA proceeds as follows. The expert performs an inference on a case. If 
they disagree with the conclusion given they specify the correct conclusion and pick 
some features in the case to justify the new conclusion. These features must 
differentiate the current case from the case associated with the rule that misfired [5]. 
The new rule is added as an exception.  

RDR non-monotonically reasons over a list of ordered rules with exceptions. RDR 
belong to a class of representation schemes that provide modularity through the use of 
exceptions. While this class includes other approaches, RDR are ‘the most general for 
attribute-value based representations and most strongly structured” [18, 279]. Interest 
in exception structures is due to a number of factors including: the naturalness and 
comprehensibility of the representation by human experts; the support they offer for 
incremental change; the use of context and maintainability of the knowledge due to 
localization of changes [7,13]. Exceptions also provide a compact representation and 



 

accounts for the use of exceptions as output structures for some machine learners 
[19]. The cases and exception structure work together to provide the context. 

The approach seeks to draw on the benefits of cases and rule-based systems but 
avoid the limitations. Rule based systems do not provide context or grounding in the 
real world. CBR suffers from the indexing problem associated with retrieving 
appropriate cases and deciding how best to adapt cases. The use of cases in RDR is 
similar to the use of cases in CBR. Cases are used to: 
• assist the user to develop rules,  
• provide the appropriate context of the new rule being entered through storage of 

cornerstone case (the case that prompted a rule to be added) and  
• validate the entered rule by ensuring the current case is differentiated from other 

cases associated with the incorrect rule. 
When the expert picks the salient features in the case (which form the rule 

conditions) they are in effect selecting the index by which to retrieve the case. The 
creation of indexes is one of the major problems in CBR because most approaches try 
to generate these automatically to some extent. Getting the expert to provide this 
index as a natural part of their duties substantially simplifies the task. The way that a 
Ripple-Down rule is used to differentiate between cases combines the approaches of 
difference and checklist-based indexing and the failure-driven nature of learning in 
RDR makes it similar to explanation-based indexing. See [12] for description of these 
three main approaches to indexing cases. While RDR does place importance on the 
role of cases, each case provides a local context and there is no attempt to define 
generally applicable rules or landmark cases. CBR techniques usually try to identify 
important cases that are used to classify new cases.  

RDR were first developed to handle single classification tasks. An exception 
structure in the form of a binary tree with true and false branches is used to provide 
rule pathways, see an example in Figure. We have developed multiple classification 
RDR (MCRDR) to handle classification tasks where multiple independent 
classifications are required [10,11]. The method builds n-ary trees and consists only 
of exception branches. A better description may be sets of decision lists joined by 
exceptions. In contrast to single classification RDR all rules attached to true parents 
are evaluated against the data. An MCRDR is defined as the quadruple <rule,P,C,S>, 
where P is the parent rule, C are the children/exception rules and S are the sibling 
rules within the same level of decision list. Every rule in the first list is evaluated. If a 
rule evaluates to false then no further lists attached to that rule are examined. If a rule 
evaluates to true all rules in the next list are tested. The list of every true rule is 
processed in this way. The last true rule on each path constitutes the conclusions 
given. Current empirical evaluations of a commercial system using MCRDR have 
shown that experts can build systems with 3- 4,000 rules in about one person week. 
Even KBS with 7,000 rules do not suffer from maintenance problems. Thus the RDR 
approach is not only rapid but also highly scalable. Simulation studies [10] have 
shown MCRDR to be a superior representation to the original RDR structure by 
producing knowledge bases that mature more quickly and are more compact even for 
single classification domains. It is conjectured that this occurs because more use is 
made of expertise rather than depending on the knowledge base structure [11]. The 
simulation studies showed that although the order of cases seen and the quality of the 
cases (stereotypical or landmark cases can be viewed as higher quality) will affect the 
compactness of the knowledge base and how quickly it matures, a similar and equally 
effective set of rules will be developed regardless of the order or nature of the cases. 

We have recently applied ideas from Formal Concept Analysis (FCA) [20] to 
MCRDR so that the implicit concepts, both primitive and more abstract, in an 
MCRDR assertional KBS can be found and structured into a terminological KBS. The 



 

RDR assertions provide a performance system and the concept lattice derived using 
FCA provides an explanation system. This enhancement is important as minimal 
analysis of domain knowledge was a strength of the KA technique but it meant that it 
was not possible to show higher level models of the domain knowledge. The 
abstraction hierarchy that FCA automatically develops offers a retrospective model 
that is based on the MCRDR rules. While the MCRDR approach does not require a 
model for KA or inferencing we are interested in providing the user with a model 
since models can assist instruction [17] and explanation [3]. 

 

 
3.  Discussion and Conclusion 
Providing contextual knowledge to the user is a high priority in the RDR approach. 
Cases, the exception structure and local patching have made it possible to offer 
contextualised explanations and KA, detection of erroneous or missing knowledge; a 
critique of the user’s plan in the form of an explanation of the system’s plan; and 
increased depth of knowledge by showing abstracted concepts not obvious directly 
from the rule pathways. The FCA option also provides the structure of the knowledge 
by showing the sub, super and matching concepts. 

Others (e.g. [4, 9]) have found the combination of rule-based and case-based 
reasoning to be beneficial. In [4] C5 is used initially to classify the cases and a 
typicality measure is used next to rank the cases. The use of a similarity measure is 
seen to provide global knowledge based on all the cases whereas the C5 rules 
generate more local knowledge. [9] also applies rules to get a first approximation 
and then uses cases when an exception to the rules is seen to be compellingly 
similar. They see that the use of cases can overcome deficiencies in the rule set. As 
we found, cases are often more readily available and easier to acquire than rules. 
However, our combined use of cases and rules is a little more holistic in that the 
relationship between cases and rules are more intertwined. Our rules are developed 
based on cases which are then stored with that rule and used in further knowledge 
maintenance. In the other two approaches cases are used as a second step to 
supplement the rule-based knowledge.  

Mainstream KBS research is focused on knowledge level modelling [15] and the 
use of ontologies to assist development of these models. Kolodner [12] argues that 

 
Figure 1: A rule trace in single classification RDR 



 

in domains where models are not well understood, that is causal knowledge is not 
known, cases can be used to capture knowledge about the domain. We go further 
and argue that models by their very nature are problematic [3, 8,], both in their 
definition and validation, and that cases can be useful to alleviate these problems. 
By letting the domain expert run cases and assign conclusion/s, which is what they 
are expert at, we easily and rapidly capture a performance system with minimal a 
priori analysis of the domain. By translating the rules into a formal context we can 
use FCA to uncover an explanation system in the form of an abstraction hierarchy. 
Thus the user is able to capture, validate, apply, manipulate and explore 
contextualised knowledge through the combined use of rules and cases. 
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