

Assisting Decision Making in Requirements Reconciliation

Debbie Richards and Kathrin Boettger
Department of Computing

Division of Information and Communications Sciences
Macquarie University

Sydney, Australia
Email: richards@ics.mq.edu.au

The design of a system will always be limited by a poor
requirements specification. If the requirements are
inconsistent, incomplete or invalid then the design will be
inappropriate or even useless. Use cases are becoming
increasingly popular as a means of capturing system
requirements from the user’s point of view. This process
involves the development team brainstorming the main
chunks of functionality and then describing the steps
involved in each use case. Even though this is a group
activity it is common for a few to dominate the group
which results in incomplete use case descriptions that do
not represent the requirements of the whole group. In our
approach, known as RECOCASE as we use a CASE tool
to assist requirements RECOnciliation, the group identify
and then asynchronously capture multiple requirements
viewpoints. The use case descriptions are entered in
natural language and automatically processed by our
system to produce a concept lattice. The concept lattice is
used to reveal common ground and differences between
the stakeholders. Our group process enables conflicts to
be identified and resolved, where possible, using our
negotiation strategies and resolution operators.

1. Introduction
The design of a system will always be limited by a poor
requirements specification. If the requirements are
inconsistent, incomplete or invalid then the design will be
inappropriate or even useless. Use cases are becoming
increasingly popular as a means of capturing requirements
from the users’ point of view. This process involves the
development team brainstorming the main chunks of
functionality and then describing the steps involved in
each use case. Even though this is a group activity it is
common for a few to dominate the group which results in
incomplete use case descriptions that do not represent the
requirements of the whole group. The approach and tool
we have developed is designed for individual and group
use. Our approach assists the group communication
process and also results in a number of artifacts which are
used to generate new concepts and refine those already
identified.

The process begins with the group brainstorming the
main chunks of functionality in the form of a use case
diagram using the Unified Modelling Language (UML).
Ivar Jacobson was the first who applied the concept of use
cases to software development as part of his object-
oriented software engineering method (OOSE) (Jacobson,
1992). A use case represents a complete course of events
in a system from the user’s perspective. A use case
describes the interaction between the system and an actor.
Jacobson uses the term actor to refer to the role played in
relation to the system and can include an individual,
group, another system or hardware device. Using the
terminology of object-oriented software development
scenarios are instances of use cases. A scenario is a
concrete, focused and informal description of one possible
behaviour of the system interacting with an actor.
Scenarios are formalized into use cases. Possible use
cases for an ATM include withdrawing cash, depositing
funds, transferring funds, checking balance, and validating
customer. With a visualization of the use cases before
them the group identify viewpoints and a representative,
probably from within the group, for each viewpoint.

After the initial group meeting, the group leader
creates a new project and enters the names of the
identified use cases into the RECOCASE-tool. Later, the
representative for each viewpoint can log into the system,
open the project and enter descriptions for one or more
use cases for their viewpoint. Use case and scenario
descriptions provide a textual description of such things
as use case name, actors, preconditions, postconditions,
trigger, main flow and alternative flows. Our work is
primarily concerned with the main flow which is the step-
by-step sequence of actions from trigger to achievement
of postconditions. These descriptions may be in natural
language but better results are achieved with our tool
when a controlled language is used. We have developed
guidelines and tool support to assist the user in complying
with the controlled language (Boettger et al. 2001).
LinkGrammar is used by an answer extraction system
(ExtrAns) (Molla et al 2000) to translate the sentences of
the use case description into flat logical forms (FLFs).
FLFs are used to create crosstables. Formal Concept

Analysis (FCA) (Wille 1982, 1992) is used to develop a
concept lattice which can be displayed as a line diagram
to graphically represent the viewpoints. This process may
sound complex, but it is shielded from the user, who
simply enters the steps involved in a particular scenario or
use case and then views a line diagram of the concept
lattice. Our group process then offers a number of
resolution strategies and operators to assist development
of a shared conceptual model of the requirements.

We call our approach RECOCASE as we offer a
CASE (Computer Aided Software Engineering) tool to
assist with viewpoint RECOnciliation.

2. The Viewpoint Development Process

Viewpoint development has been proposed (e.g.
Darke and Shanks 1997, Easterbrook and Nuseibeh
1996, Finkelstein et al 1989 and Mullery 1979) as one
way to develop a set of requirements that are
representative of the many stakeholders who may be
involved with a software project. Our approach is novel
in that in addition to capturing multiple viewpoints it
allows entry of requirements in natural language,
automatic conversion into a formal representation,
visualization of the requirements and resolution
strategies to derive a shared and comprehensive set of
requirements. The RECOCASE development process
includes six iterative steps. These steps are:
1. Requirements acquisition (describe use cases)
2. Requirements translation (convert to crosstables)
3. Concept generation (generate concepts using FCA)
4. Concept comparison and conflict detection (by

viewing concept lattices)
5. Negotiation (applying our resolution strategies)
6. Evaluation (calculating distance between viewpoints

based on distance between nodes on the lattice)
For the purpose of this paper we have simplified our

process to the Viewpoint Development Process proposed
by Darke and Shanks (1998) which includes the phases
of viewpoint identification (our step 1), viewpoint
representation (our step 2 and 3), intra-viewpoint
analysis (our step 4), inter-viewpoint analysis and
viewpoint integration (our steps 4, 5 and 6). We consider
each of these phases next.

2.1 Viewpoint Identification

Viewpoint identification starts with the creation of a
viewpoint model which is an extension of Jacobson’s use
case model. The development team will be comprised of
a number of different types of people including users
from different departments in the organization (eg.
personnel and marketing), from different levels in the
organization (eg. managers and operational staff) and
people with different tasks and responsibilities (eg.

programmers, usability engineers). A number of
viewpoints can be identified for each use case
representing one or more of these group members.
Others outside of the organization such as suppliers and
customers may also need a viewpoint agent to be
assigned to represent them. All methods for the
identification of Jacobson’s use case model can be
applied to the identification of a viewpoint model. One to
five viewpoints for each use case would be expected. The
representative or ‘viewpoint agent’ is responsible for
describing that viewpoint.

2.2 Viewpoint Representation

RECOCASE captures viewpoints of functional
requirements in the form of use cases and scenarios. Our
tool provides three alternative ways of entering and
structuring use case descriptions. One possible way to
describe the flow of actions is to use unstructured text (-
style 1-). Cox (2001) suggests to write a use case as a list
of discrete actions in the form <action#> <action
description> and to use a separate line for each action (-
style 2-). Figure 1 uses style 2 and shows what a use case
description may look like. Wirfs-Brock (1993) proposed
a structured form which is divided into a user-action-
model and a system-response-model to describe the
interaction between a user and a system through a
graphical user interface (-style 3-). See Table 1 for an
example of style 3. The user-action model represents
what the user does and the system-response model shows
the system’s responses to the user actions. For the
approach described in this paper the model of user-
system interaction by Wirfs-Brock is extended to a
model of actors-system interaction to be able to describe
the interaction between the system and more than one
actor. In our approach and tool scenarios may be
specified in any of the 3 styles. Use case descriptions
may be written in style 2 or 3 since the free format of
style 1 is too unstructured for our tool to enforce the
guidelines and controlled language.

Table 1: Model of user-system interaction modified

from Wirfs-Brock (1993)
User Action System Response
1. Insert card 2. Read magnetic stripe
 3. Request PIN
4. Enter PIN 5. Verify PIN
 6. Display transaction option menu
7. Press key 8. Display account menu
9. Press key 10. Prompt for amount
11.Enter amount 12. Display amount
13. Press key 14. Return card
15. Take card 16. Dispense cash
17. Take cash

Figure 1: Graphical User Interface for Composition of a Use Case Viewpoint

2.3 Intra-Viewpoint Analysis

After a use case has been described for each
viewpoint it should be checked to see if the viewpoint
agent followed the guidelines (Boettger et al. 2001). This
is important as we need to translate the natural/controlled
language sentences into tabular format. In RECOCASE-
tool we provide manual and automatic checking. The user
can press the ‘verify rules’ command button, as shown in
Figure 1, to have their sentences checked before they
request conversion of the sentences into a crosstable or
line diagram. To conform with our use case description
guidelines, the tool looks for unknown words, modal
verbs, personal and possessive pronouns and replaces
them or asks the user to provide an alternative.
Alternatively the user can select “save viewpoint’ without
first verifying the sentences. Step by step verification by
the viewpoint agent is preferred as it avoids errors that
may be harder for the user to identify and correct later and
the process also assists the viewpoint agent in learning the
controlled language. We are currently working on adding
further verification features to the tool at the word and
sentence level. These features directly relate to the
guidelines and rules of the controlled language. At the
current stage the tool assists in finding words which are
unknown for ExtrAns or which are treated as keywords.
The tool also provides an output referring to the structure
of each sentence (noun phrases, verb phrases, phrase
sentences) which we use in breaking up the sentence into
word and phrases displayed in the line diagram.

2.4 Inter-Viewpoint Analysis and Viewpoint
Integration

The previous step was concerned with the internal
consistency of a viewpoint and is a necessary prerequisite
for inter-viewpoint analysis and integration into a shared
viewpoint which is the ultimate goal of this work. The
project leader, or another appointed person with
experience in working with the tool and the reconciliation
process, would explore the viewpoints by combining
selected viewpoints. To make the task manageable and the
line diagram readable, this person would select certain
terms and/or sentences on which to focus. The leader
would prepare a number of line diagrams around which
discussions can be held. This is a very similar approach to
the use of UML in object-oriented system and software
design. During the meeting participants can suggest
alternative interesting aspects of the requirements to view
in a line diagram either during the meeting or later. Figure
2 shows a line diagram which includes the viewpoints of
Agent A and Agent B for the “booking room” use case
which is part of an online accommodation reservation
system. Just the sentences concerning the system have
been included.

As part of our group decision support approach we
provide strategies for identifying and resolving conflict. A
number of resolution strategies have been offered but we
have found that the five categories offered by Easterbrook
and Nuseibeh (1996) cover the actions we have found
necessary. These are:

1. Resolve, correct any errors;

2. Ignore, no action is performed;
3. Delay, identify the existence of the inconsistency

but defer action until a later date;
4. Circumvent, identify the existence of the

inconsistency so it can be avoided;
5. Ameliorate, reduce the degree of inconsistency.

This action requires analysis and reasoning.

The first step of this phase is analysis of the
terminology used to find out if the viewpoint agents have
a common understanding of the terminology and to be
able to make concepts more similar for further analysis
steps. For example one viewpoint agent may use the term
‘ATM card’ and another viewpoint agent just uses the
term ‘card’ to refer to the same object which is inserted
into the ATM to get cash. To reconcile differences in
terminology we use a table of synonyms, hyponyms and
hypernyms that the viewpoint agent or project leader can
use to map one term to another. For example in Figure 2,
if one viewpoint agent had used the word ‘display’ instead
of ‘show’ the table can be used to map the two terms so
that only ‘show” is displayed.

The identification of different concepts using the same
terminology will be difficult but the lattice may be able to
assist. In such a situation some of the terms will be shared
but others will not. This will suggest that the two
viewpoints are referring to different things even if they
use the same word/s. For example, the two sentences in
Viewpoint A {customer, requests, receipt}{bank, issues,
receipt} and the sentence {customer, issues, receipt} in
Viewpoint B use the same terminology but represent
different concepts. There is obviously an error that needs
to be reconciled by the viewpoint agents.

If synonyms, hyponyms and hypernyms are defined,
the second step is to determine if two concepts provide
the same information. Two or more concepts described by
different viewpoint agents can be in consensus if they
describe the same action or state using the same
terminology. This is usually the case if viewpoint agents
describe their viewpoints on the same level of detail.
These concepts share the same node in a concept lattice
and so are easy to identify.

Partial consensus occurs if two or more formal
concepts1 share some but not all attributes. For example
the sentences {ATM, provide, receipt} and {ATM,
release, receipt} share the attributes ‘ATM’ and ‘receipt’
and are thus subconcepts of the concept {ATM, receipt}.
This allows the same action or state to be described on a
varying level of detail. For example the sentence {ATM,
print, receipt, receipt show transaction number and

1 A formal concept is a pair comprised of a set of object and the
set of attribute they share. In our usage an object corresponds to
a use case step/sentence and an attribute is the words or phrases
that comprise the sentence.

transaction type and amount and account balance} gives
more information than the sentence {ATM, releases,
receipt} but they describe the same action.

After the identification of concepts giving the same
information the viewpoints can be investigated to find
information not given in all viewpoints. These can be
missing steps or a different sequence of action or states.
Missing steps or missing conditions are represented by
concepts which are not shared by all viewpoints. There
are many missing steps in Figure 2. The bottom nodes
contain the identity of the viewpoint agent who wrote the
sentence. Any bottom nodes with only one viewpoint
agent indicates that they were the only one to have that
sentence. Information about a different sequence of
actions or states can only be derived from the
‘action/state#’. In Figure 2 we have removed the action
numbers from the line diagram to reduce screen clutter
but they can be displayed. Where different levels of
abstraction are used to specify requirements the analyst
may choose to add or drop steps. However, the model that
we are left with after negotiations is not expected to show
all viewpoints now in total agreement but it must
represent what the group are willing to accept.

The last four resolution strategies are relevant for
situations in which a complete resolution cannot be
negotiated and each one has its appropriate usage. For
example, ignoring is a useful strategy where the issue is
not that important or pursuing it is not worth the effort or
harm it may cause to the end solution. These approaches
can be termed as living with inconsistency or ‘lazy’
consistency (Narayanasway and Goldman 1992) and can
be compared to fault-tolerant systems that continue to
function after non-critical failures occur. We also accept
that living with inconsistency will be necessary and use
tags to identify the status of the conflict. These tags are
attached to nodes on the line diagram to mark the action
taken. They can be displayed or hidden by the user. The
use of tags is similar to the use of “pollution markers”
(Balzer 1991) that act as a warning that code may be
unstable or that the users should carefully check the
output. Pollution markers can be used to screen
inconsistent data from critical paths that must have
completely consistent input. If it is the concept that is
being circumvented, ignored or delayed, we mark the
concept in the shared model. The updated shared use case
and updated individual use cases are used as input in the
generation of the next shared model.

To keep the lattice readable we have a number of
ways of selecting what can be included for comparison.
We are also improving our display and navigation of
lattices. We will be performing comparisons and
evaluations of all aspects of the RECOCASE approach
including documenting our comparisons with other use
case guidelines and controlled languages.

Figure 2: Line diagram for the “Booking Room” use case from Agent A and Agent’s B viewpoints for sentences

which concern the system.
To read the line diagram start at the bottom nodes to find the agent who is the owner of the sentence, pick up the term in
that node and then pick up all terms that can be reached by all ascending paths to get the complete sentence. For example
the selected node on the far right represents the sentence that was written by agent A and says that the “system, shows,
[the] room capacity” Most sentences are not shared by the two agents. However, we can see that Agent A and B agree
that the System saves a request (fourth node from left). The sentences on the far left show that Agent A and B have a
sentence stating that the system sends an email. In addition, Agent A states that the email is sent as a receipt.

3. Conclusion

It would be difficult to classify our approach and tool
using any one of the types of systems given in (Dix et. al
1998). Our tool can be seen as a meeting and decision
support system in so far as it allows individuals to record
their reasoning (arguments) when used to build their own
conceptual model and to support the discussion of ideas
and concepts when used in face-to-face groups that are
synchronously co-located. What makes our approach
different to typical meeting and decision support systems
is that the team members work at times alone and at other
times together to develop individual as well as a co-
authored system. The shared conceptual model provides
structure, focus and identifies similarities and differences
within the group providing a wider communication
bandwidth not available when reviewing the individual
viewpoints separately.

We have chosen to use a visual representation of the
individual and shared requirements models as a central
part of our group decision support software. The utitlity of
the approach thus hinges on the usefulness and usability of
the concept lattice. An initial small study in 1998
(Richards 1998) found that 10 out of the 12 subjects were
able to learn to read a line diagram within a few minutes,
that the line diagram was easier and faster to use than a

text in answering the questions. The results were
promising but, as noted by Kremer (1998) and evidenced
in (Petre and Green 1993), use of a visual language
requires time and effort to learn and this makes evaluation
of the line diagram by novices a difficult task. More
recently 201 second year requirements, analysis and
systems design student participated in a study to evaluate
our use case guidelines and the usefulness of the line
diagram for reasoning about requirements. Further
anaylsis is being performed, but our results-to-date show
that reading and reasoning with the line diagram could be
learnt by 58% of our subjects after a 5 minute
introduction, questions were 20-80% more likely to be
correct when using the diagram as opposed to textual
sentences and that 61% of students preferred using the
line diagram over sentences to answer the questions.
Answering the questions using the diagrams was 1.5 to 9.9
times faster. We discovered that students found the
diagram in our third task more complex than the others
and this produced better results for the sentences for this
task. However, even for that task the questions were
answered 9.9 times faster by those with the diagram
compared to those with sentences.

In the next few weeks an evaluation will be designed
and conducted to test how well the RECOCASE-tool

supports our group decision process and assists
requirements reconciliation. In the second half of this year
we will begin an indepth comparison with similar
groupware tools. In particular we will explore the natural
language and group process work done by (Al-Ani et. al.
1999 which uses the gIBIS tool (Conklin and Begeman
1991)) and (Ambriola and Gervasi 2000). To allow
distributed users to participate in group decision making
we would need to address the issue of distributed meeting
rooms. We may be able to integrate our approach with the
work by Greenberg and Roseman (1998) which uses a
room metaphor to allow work to occur individually and as
a group as well as synchronously and asynchronously. We
need to consider the numerous issues that differentiate
face-to-face communication from text-based
communication. The findings of (Damian et al 1999).
indicate that the group may more successfully achieve
their goals by working in a distributed mode without the
emotional complications of face-to-face interaction.

The outcome of the evaluations will possibly result in
changes to our group process. However, the approach
already offers a viable solution to capturing use case
viewpoints in natural language from multiple stakeholders
which can then be visualized and compared resulting in a
more complete and representative set of requirements
upon which the system design can be based.

Acknowledgements: Many thanks to those who have
contributed to this project: Oscar Aguilera, Rolf Schwitter and
Diego Molla-Alloid. This project is funded by the Australian
Research Council.

References
Al-Ani, B., Leaney, J., and Lowe, D. (1999) A Taxonomy of

Partially Excluded Service Descriptions Proceedings of the
Fourth Australian Conference on Requirements Engineering
(ACRE'99) 29-30 September, 1999, Macquarie University,
Sydney, 15-26.

Ambriola, V. and Gervasi, V. (1998) The Case for Cooperative
Requirement Writing. ECOOP Workshops 1998: 477-479

Balzer, R. (1991) Tolerating Inconsistency Proceedings of 13th
International Conference on Software Engineering (ICSE-
13) Austin, Texas, USA, 13-17th May 1991, IEEE Computer
Society Press, 158-165.

Boettger, K., Schwitter, R., Richards, D., Aguilera, O. and
Molla, D. (2001) Reconciling Use Cases via Controlled
Language and Graphical Models, The Proceedings of the
14th International Conference on Applications of Prolog,
(INAP’2001), 20-22 October, 2001, Uni. of Tokyo, Japan.

Conklin, J. and Begeman, M.(1991) gIBIS: A Tool for all
Reasons Journal of the American Soc. for Info. Sci., March.

Cox, K. (2001) Experimental Material,
http://dec/bournemouth.ac.uk/staff/kcox/UCwriting.htm.

Damian, D., Eberlein, A. Shaw, M. and Gaines, B. (1999)
Studies in Distributed Software Requirements Engineering
In Proceedings of the 12th Workshop on Knowledge

Acquisition, Modeling and Management (KAW'99), 16-21
October, 1999, Banff.

Darke, P. and Shanks, G.. (1997) Managing User Viewpoints in
Requirements Definition, 8th Aust. Conf. on Info. Systems.

Dix, A., Finlay, J., Gregory, A. and Russell, B. (1998) Human
Computer Interaction 2nd Edition, Prentice Hall, London.

Easterbrook, S. and Nuseibeh, B. (1996) Using Viewpoints for
Inconsistency Management BCSEEE Software Engineering
Journal January 1996:31-43.

Finkelstein, A., Gabbay, D., Hunter, A, Kramer, J. and
Nuseibeh, B. (1994) Inconsistency Handling in Multi-
Perspective Specifications IEEE Transactions on Software
Engineering 20(8):569-578.

Greenberg, S. and Roseman, M. (1998) Using a Room Metaphor
to Ease Transitions in Groupware Research Report
98/611/02 Department of Computer Science, University of
Calgary, Calgary, Alberta, Canada, January,
http://cpsc.ucalgary.ca/grouplab/papers/

Jacobson, I. (1992) Object-Oriented Software Engineering,
Addison-Wesley.

Kremer, Rob (1998) Visual Languages for Knowledge
Representation Eleventh Workshop on Knowledge
Acquisition Modeling and Management (KAW’98) Banff,
Canada, April 18-23, 1998.

Molla, D., Schwitter, R., Hess, M. and Fournier, R. (2000)
“Extrans, an answer extraction system” T.A.L spec. issue on
Info. Retrieval oriented Natural Language Processing.

Mullery, G. P. (1979) CORE - a method for controlled
requirements expression In Proceedings of the 4th
International Conference on Software Engineering (ICSE-
4), IEEE Computer Society Press, 126-135.

Narayanaswamy, K. and Goldman, N. (1992) “Lazy
Consistency”: A Basis for Cooperative Software
Development Proceedings of International Conference on
Computer-Supported Cooperative Work (CSCW’92)
Toronto, Ontario, Canada, 31 October- 4 November, 257-
264; ACM SIGCHI & SIGOIS.

Petre, M. and Green, T.R.G. (1993) Learning to Read Graphics:
Some Evidence that ‘Seeing’ an Information Display is an
Acquired Skill Journal of Visual Languages and Computing
4(1):55-70.

Richards, D. (1998) An Evaluation of the Formal Concept
Analysis Line Diagram In Slaney, J., Antoniou. G and
Maher, M.J. (eds) Poster Proc. of 11th Australian Joint
Artificial Intelligence Conf. AI'98 13-17 July 1998, Griffith
University, Nathan Campus, Brisbane, Australia, 121-133.

Wille, R. (1982) Restructuring Lattice Theory: An Approach
Based on Hierarchies of Concepts In I. Rival (ed), Ordered
Sets Reidel, Dordrecht, Boston, 445-470.

Wille, R. (1992) Concept Lattices and Conceptual Knowledge
Systems Computers Math. Applic. (23) 6-9:493-515.

Wirfs-Brock, R. (1993) Designing Scenarios: Making the Case
for a Use Case Framework. Smalltalk Report Nov-Dec 1993.
NY, NY: SIGNS Publications.

