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ABSTRACT 

A high degree of user control has long been 
recognized as an important factor in the acceptance of 
data and information-based computer systems. Users of 
knowledge-based systems (KBS) also desire control but 
the complex approaches developed to address some of 
the limitations of KBS has resulted in systems controlled 
by knowledge engineers rather than the end-user. We 
offer a knowledge acquisition and representation 
technique, known as Ripple-Down Rules, where the user 
can easily and rapidly capture, maintain and validate 
knowledge and perform inferencing. Through the recent 
incorporation of a set-theoretical approach to data 
analysis known as Formal Concept Analysis the user is 
also able to interact with the knowledge to perform the 
activities of critiquing, ‘what-if’ analysis, tutoring, 
explanation and modelling. The user chooses the type of 
interaction according to their decision situation and 
personal preference.  

1. A brief History of HCI in KBS 

A high degree of user participation in the system 
development process and user control have been long 
recognized as important factors in the acceptance of data 
and information-based computer systems [35]. The 
dramatic rise of the microcomputer in the 1980s, led by 
the spreadsheet package Lotus 123 and database package 
Dbase IV testified that users want to have ownership and 
control, even if the systems they build are unreliable. 
When it comes to knowledge, control is even more 
important to users [12] whether they be domain experts 
or novices [18,20,21,22]. Like the spreadsheet and 
database, knowledge based systems (KBS), known more 
commonly then as expert systems (ES), were launched 
into the market in the 1980s in an atmosphere of great 
expectation. However, KBS did not meet with 
widespread acceptance. Many, small and large, 
knowledge-based companies collapsed as KBS were 

unable to deliver the anticipated goods. While some of 
the failure was due to overmarketing and promising 
something that the technology was not yet capable of, 
limited acceptance of first generation KBS by users was 
largely due to a lack of consideration of human-
computer interaction (HCI) issues [21,33]. Some 
developers had assumed that because KBS were to be 
primarily used by professional people that they were 
exempt from HCI concerns and that the typical question-
answer-conclusion style of interaction was adequate. 
Clancey [5] considers the typical consultation interface 
of KBS to be superficial because the line of questioning 
approach does not allow the user to build a model that 
they can manipulate. Kidd and Sharpe [20] also argue 
that earlier systems did not really solve the users’ 
problem. Users don't only want to know “what is the 
fault?” or “what is the remedy?” They want to ask 
questions and negotiate a remedy. The problem has been 
that KBS have been designed from the machine's 
viewpoint and lack the scope and robustness needed by 
users with a wide range of needs [33].  

The saddest part of this story is that the history of 
HCI in KBS has changed very little since the 1980s. 
While KBS research has progressed and some of the 
technical limitations of earlier systems have been 
resolved there has been an even greater shift in focus 
away from the end user. In the 1980s many, if not most, 
of the ES available were shells, which provided an 
inference engine, an interface and an empty knowledge 
base (KB). The user was guided by the system to enter 
conclusions, attributes, values and to develop production 
rules in the form IF… THEN... While the user had little 
or no control over the way the knowledge was presented 
and the interfaces and explanations tended to be poor, at 
least the user did have ownership of the knowledge. In 
addressing the various limitations of first generation 
KBS, researchers have focused on the technical or 
usefulness problems and ignored usability issues. Three 
major problems experienced by first generation KBS 
include:  the knowledge acquisition (KA) bottleneck, the 



problems associated with the maintenance of medium-
large KBS and the brittleness problem [18]. In 
attempting to address these issues, the focus in the 1990s 
of most KBS research has been on complex modeling at 
the Knowledge Level [23]. The techniques offered to 
address these problems include the reuse of general 
problem solving methods and ontologies. While, reuse 
approaches do not overcome the inability of experts to 
articulate their knowledge they offer patterns of 
knowledge, which provide structure and guidance. Reuse 
also means that KA needs to be performed less often. 
However, the methodologies developed were complex 
and required a skilled (team of) knowledge engineer(s) 
to develop the system. Many approaches require the 
knowledge engineer to acquire the knowledge from 
domain experts and encode it for use by the KBS. This 
has exacerbated the lack of attention to HCI issues and 
has resulted in systems where the end-user is not a direct 
participant but must interact with the system via the 
mediation of the knowledge engineer.  This third party 
situation does not promote a sense of ownership or 
control by the end-user. 

This paper suggests that reuse of knowledge is a key 
issue for end-users but not the type of reuse mentioned 
above. The system described in this paper seeks to give 
the user ownership and control of their knowledge. Since 
control is made possible via by the user interface [16] we 
offer a number of alternative interfaces that may be 
accessed within the same session. The knowledge 
captured for one purpose, such as for consultation, may 
be reused by the user to explore and view the knowledge 
in a wide range of interaction styles. The user chooses 
the type of interaction according to their decision 
situation and personal preference. Through the use of a 
knowledge acquisition and representation technique 
known as ripple-down rules (RDR) [8] it is possible for 
the user to easily and rapidly capture, maintain and 
validate knowledge and perform inferencing. The range 
of activities supported by RDR have been increased 
through the incorporation of a set-theoretical approach 
to data analysis known as Formal Concept Analysis 
(FCA) [40]. FCA allows an abstraction hierarchy of 
concepts, known as a concept lattice, to be automatically 
generated from an RDR assertional KBS. The additional 
knowledge uncovered supports the activities of 
critiquing, ‘what-if’ analysis, tutoring, explanation and 
modelling.  

While modeling still predominates KBS research, 
there are some, including the authors, who are 
concerned with the context-dependence and socially 
situated nature of expertise [1, p.240). Clancey [6] and 
Collins [7] argue that what we do and say only makes 

sense in our social context. An expert cannot exist 
without a social context responsible for conferring expert 
status. This new focus is important for KBS HCI because 
it acknowledges that human factors are essential parts of 
the system. A social view of knowledge prompts the 
question “how can we embed our concepts into a 
computer and use them when computers don’t share our 
social view ?” Collins [7] suggests treating the KBS as a 
valuable assistant where the expert takes advantage of 
the machines ability to store and process more 
information and heuristics than a human mind but the 
inputs and outputs are blended by the expert to fit the 
social context. A social focus requires a change from the 
traditional consultation style KBS to what can be termed 
Expert Advisory Systems [37]. Involving the human in 
the loop, however, places a new requirement for KBS to 
support user cognitive tasks. We have borne this in mind 
in the development of our system by making interaction 
with the system as close as possible to the way they 
perform that task manually. 

The approach we propose is based on the view that 
knowledge is never complete and is made-up to fit the 
situation. The technique is particularly designed to allow 
easy maintenance of the knowledge by the domain 
expert. Cases are used to provide context and to ground 
the knowledge in the real world. The initial model 
captured is very low level and is based on these cases. 
We do not seek to understand the reasoning processes of 
the expert we simply capture their expert behaviour. 
Unlike systems based on user models, we impose 
minimal structure on how the user interacts with the 
system and do not offer explanations based on our view 
of the knowledge or of them.   

2. The Many (inter)Faces of RDR 

The RDR system described in this paper has many 
alternative interfaces. These interfaces do no simply 
equate to different screens but are different ways of 
interacting with and exploring the knowledge base. 
Figure 1 shows a Menu-list of options available to the 
user. The first 11 options (up to Utils) were available in 
the original multiple classification RDR (MCRDR) 
prototype system. The remaining 10 options were added 
in seeking to provide a wider selection of interaction 
modes. Typical of many KBS, the HCI focus in the 
original MCRDR system was on acquisition of the 
knowledge and performing inferences on that 
knowledge, hich were provided by the first 5 menu 
options. The RDR approach to KA is novel in 
comparison with other KBS and is discussed in greater 
detail in section 2.1. The remaining 6 options provided 
other functions such as statistics and rule browsing. 



Various statistics about such things as the size and shape 
of rules, the number of rules that gave a particular 
conclusion, a list of rules which used a particular 
condition, were also available. The explanations 
provided consisted of rule traces. Rule traces have been 
found by users to be hard to follow and unlike human 
language. The traces offered by RDR were typically less 
confusing since RDR do not use intermediate rules or 
disjunctions of conditions and more intuitive due to the 
exception structure which has been considered to be a 
useful mediating representation between machine and 
human [2]. The approach offered by RDR involved 
minimal analysis and was a simple technique designed 
to be used by the domain  expert. This worked very well 
for KA and inferencing but we found that the lack of 
higher level models made it difficult to support certain 
(re)uses of the knowledge. Models are appropriate 
components of explanation, instruction and exploration 
interfaces by assisting the user in understanding the 
conceptual structure of their domain [5,34,41]. The 
approach we have developed involved the retrospective 
and automatic generation of abstraction hierarchies, 
using formal concept analysis (FCA) [40] and cluster 
analysis, based on the primitive knowledge in the RDR 
KB. This hierarchy can be used to support such tasks as 
inferencing and KA in a critiquing interface, letting the 
user explore different scenarios by manipulating input 
values to support ‘what-if’ analysis, showing the user 
how a  new rule they are proposing to add (in the form 
of conclusions and rule conditions) fits in or appears 
inconsistent with the existing knowledge and to provide 
an improved explanation facility for such purposes as 
tutoring or causal modeling. 

Figure 1: The Inference (Test Data) Screen with 
Menu Droplist of other available interfaces. 

2.1 Knowledge Acquisition, Maintenance 
and Validation 

The founders of RDR [8] wanted to provide a 
representation and KA technique where the maintenance 
effort was reduced to a manageable task that could be 
performed by the domain expert. A major consideration 
to the approach developed was the observation that 
experts did not provide explanations of why they chose a 
particular course of action but rather they gave a 
justification for their decision and the contents of that 
justification depended on the context, specifically the 
audience [9,25].  

Interaction with the system is simple and the user 
does not need to switch between applications to perform 
system development, KA, maintenance and inferencing 
as they are treated as parts of the one task. New rules are 
added (KA and maintenance) in response to a case being 
misclassified (an inference). KA involves the expert 
viewing a case with a system assigned conclusion. If the 
user does not agree with the classification, he/she 
assigns the correct classification to the case and picks 
some feature/s in the case that justify the conclusion and 
which form the conditions in the new rule. In most KBS 
the person responsible for KA would be different to the 
person who uses the system for inferencing. To assist the 
user with KA and provide context and on-line 
validation, the case that prompted a new rule to be added 
is stored in association with the new rule and is referred 
to as the cornerstone case. When a misclassification 
occurs, the cornerstone case for the rule that fired is 
shown along with the current case and the user must 
pick some feature/s which distinguish the two cases. 
This ensures that no previously correctly classified case 
becomes misclassified.  

The ease with which systems can be developed 
without the need for complex analysis of the domain as a 
prerequisite or major assistance from a knowledge 
engineer is what makes RDR such a different paradigm 
to mainstream KBS research. We see the reliance on 
models for KA as error-prone due to the difficulty of 
capturing such models and the inherent unreliability of 
models [4,14]. In accordance with the observed social 
and situated nature of expertise, we prefer to capture 
knowledge in the way that experts exhibit their 
expertise, that is, going straight from data to conclusions 
without modeling as a prerequisite to the capture of 
expertise as rule-base implications. See [9] for a 
discussion of analysis-free KA. The argument over 
whether models must be developed first is relevant to 
HCI because the complex and time-consuming effort 
involved in developing these models has resulted in a 
KBS research focus on describing the domain and 



problem solving method knowledge at the expense of 
user-driven and centred research. By taking a simple, yet 
reliable, approach to KA we can concentrate more on 
user needs. 

Other work based on Personal Construct Psychology 
[19] using Repertory Grids [14] and formal contexts in 
Formal Concept Analysis [40] also minimizes reliance 
on models and knowledge engineer support but does not 
support on-line development and the evolution of 
knowledge since they require up-front consideration of 
the whole domain.  

The major empirical support by users for RDR is in 
the medical domain of clinical pathology in the 
Pathology Expert Interpretative Reporting System 
(PEIRS) [10,11]. The system covers up to 200 analytes 
(substances measured) with the results for about 20 
analytes at five sample time intervals on each report. For 
a description of our handling of time-course data see 
[26]. This system went into routine use in a large Sydney 
hospital with 198 rules and grew on-line to over 2000 
rules in a four-year period (1990-1994). Maintenance 
was performed by the medical expert without the 
intervention of a knowledge engineer. PEIRS provided 
comments for about 20 percent of the 500 reports issued 
each day. Each report was reviewed by a medical expert 
resulting in four to five corrections each day meaning 
the system is 95% accurate. Each rule took about three 
minutes to add, most of that time being taken up in 
deciding on the wording of the conclusion or in locating 
an existing suitable conclusion. This constitutes a 
development time of around 100 hours for the 2000+ 
rule-base. This result is in marked contrast to the two-to-
three rules per day typically associated with the 
maintenance of medium to large KBS [8].  

The success of RDR in the pathology has largely been 
attributed to the way HCI is handled [11]. Maintenance, 
which is initiated and performed by the user, satisfies the 
criteria of user ownership and control. The natural way 
in which knowledge is acquired fits the mental model 
[24] of the expert, that is the process of “assign 
conclusion - pick some features in the case to form the 
rule” is compatible with how the expert performs that 
task in real life. The system produced a substantial 
savings in the time of the expert and an increase in 
reliability since there were in effect two experts, one 
human the other machine, that were agreeing on a 
diagnosis. The requirement for cases as the basis for KA 
is compatible with the pathology domain. The 
stipulation that the user review each comment on the 
pathology report is not seen as a limitation but an 
approach consistent with the situated view of KBS as a 
support not a prosthesis [33]. 

2.2 Critiquing and ‘What-if’ Analysis 

“Second opinion” system styles, like critiquing or 
-if’ analysis, are an alternative to the more static 

consultation interface. Both system styles give the user a 
different way of interacting. The choice of which 
interface to use depends on the user’s decision style, 
current situation and personal preferences. ‘What-if’ 
analysis lets the user pose the questions. Critiquing lets 
the user pose the answer which the system critiques 
against its own solution. Both approaches let the user 
focus on what is of interest and relevance to themselves. 

‘What-if’ analysis is supported in RDR by allowing 
the user to alter any case or create their own case. This is 
done without the need to swap into a maintenance mode 
or to other screens. The changes made to the case are 
only temporary and will not affect the actual data. If the 
user wishes to add the new case permanently they can do 
so by updating the case/data file. Having changed the 
input data, the case, they then proceed as usual. 

 

Figure 2: Using MCRDR/FCA to critique the 
proposed conclusion %OX005 for the current 
case against the rules that already give that 

conclusion. 

A more sophisticated type of ‘what-if’ query, 
described in more detail below as a type of critiquing, is 
the ability of the user to add a potential rule and then see 
how that knowledge fits in with the existing knowledge 
and build models using the proposed rule. If they decide 
not to add the rule they carry on with their next task and 
the temporary rule is not added. If they decide to go 
ahead and add the rule they click ADD the same as if 
they had not performed ‘what-if’ analysis with the rule. 

There are two main concepts in the KBS that are 
critiqued: the conclusion and the rule conditions. The 
user may choose one of two ways to critique a 
conclusion. In figure 2 the user has run an inference on 
a case, decided the conclusion was incorrect, taken the 
command button RECLASSIFY, entered the new 



conclusion and then clicked the CRITIQUE command 
button. If the user preferred they could have chosen an 
alternative inference screen which let them input the 
conclusion/s they thought most appropriate and then 
have the system advise them of which conclusions were 
in agreement or disagreement with the system’s inferred 
conclusions. The latter method of performing critiquing 
is more in keeping with the Attending [22] and Oncocin 
[21] critiquing systems where the user inputs their plan 
first and then the system determines if there is a 
discrepancy. Regardless of how the user initiates 
critiquing, the pop-up window in Figure 2 shows the 
user which existing pathways, if any, in the KBS conflict 
with the proposed solution. The user may amend one of 
the rules displayed by adding an exception rule to it, 
adding a new rule higher in the tree or deciding not to 
add the critiqued conclusion to the current case. 

 

Figure 3: Critiquing proposed rule conditions 
against existing knowledge in MCRDR/FCA. 

If the user decides to add a new rule, be it an 
amendment or new pathway, they click the command 
button MAKE RULE and, as explained previously, pick 
the features in the current case which differentiate it 
from the cornerstone cases associated with the rule that 
gave the misclassification. Once the rule has been 
formed the user may add that rule immediately or they 
may take an EVALUATE RULE command button which 
shows them how the proposed rule fits in with the 
existing knowledge. The user can select to compare the 
proposed rule with the concepts derived using Formal 
Concept Analysis. This option shows a listbox of 
subconcepts, superconcepts or matches on the proposed 
pathway (rule). See Figure 3. Alternatively, they can use 
a nearest neighbour algorithm that provides a score 
between 0-1 of the similarity between each existing 
pathway and the new pathway. When the user chooses 
either the formal concept analysis or nearest neighbour 
algorithm option, the user is shown the pathway (or 
concept) and conclusion being compared so that they can 

assess intuitively whether the new rule appears to fit in 
appropriately. A benefit of using a critiquing interface is 
that they can offer more useful and focused explanations 
because they don’t attempt to explain the whole system 
but only those parts of the system relevant for the plan 
under review [22]. 

2.3 Explanation, Tutoring, Querying and Views 

The division of uses into interfaces is arbitrary and, 
as mentioned above, critiquing and ‘what-if’ analysis 
can be viewed as types of explanation. In this subsection 
we extend our notion of explanation to include such 
interfaces as tutoring and modeling (causal modeling 
being a particular case of modeling which may not be 
relevant to all domains). While intelligent tutoring 
systems typically have a model of the user to guide the 
learning process we argue that individualized models are 
costly to capture and become outdated and stereotypical 
models may be inappropriate and hard to apply. From a 
situated view of knowledge, we prefer to give the user 
sufficient freedom and tools that allow exploration of the 
knowledge by letting the user select different views and 
ask a wide range of questions according to their needs as 
a means of teaching. The explanations provided through 
the line diagrams drawn using Formal Concept Analysis 
can be based on a wide range of views. There are 
currently 13 different options including selection by 
conclusion, attribute, attribute-value pairs, conclusion 
families and so on. These views may be combined. Our 
motivation for providing such an extensive range of 
views is twofold. Firstly, we believe users need the 
flexibility offered by the choices and secondly because if 
the focus of attention is not narrowed then the diagrams 
produced will have too much information and will be 
incomprehensible. 

Explanation in RDR may be given in two main ways. 
The first is the well-known rule trace. Clancey [3] found 
that for explanation or learning purposes KBS “need to 
articulate how rules fit together [and] how they are 
constructed” [3, p.59]. This is supported by the 
exception structure of an RDR KBS but is difficult to 
determine in conventional KBS because of complex 
interaction of rules and the numerous possible pathways 
to arrive at a conclusion. Another point made by Clancey 
[2] is that students should not just be able to confirm a 
diagnosis but should be able to learn under what 
circumstances that conclusion should be considered and 
what other possible diagnoses explain the data. 
Similarly, Swartout and Moore [38] argue that in most 
systems the deeper knowledge needed for explanation is 
compiled out and lost at development time. This loss of 
information is not so severe in an RDR KBS since a 



history of the evolution of the rule base is stored in the 
tree structure and associated cornerstone cases.  

Even more powerful tools for explanation are the 
concept matrices and lattices that can be derived using 
formal concept analysis. The concept lattice gives a 
graphical representation of the concepts embedded in the 
rules of the KBS, showing both low level concepts as 
well as a hierarchy of abstractions. This ability to show 
the abstractions in the KBS that have not been explicitly 
encoded is significant. It is this sort of knowledge that is 
used by experts and needed by novices but it is also 
knowledge that is often difficult for experts to articulate 
or novices to learn. 

To give a taste of how the modeling tools may be 
useful for explanation we consider the following query: 
“What conclusions are conceptually close to the 
conclusion %OX005 and what are the relevant higher 
concepts or abstractions ?”. To ask this question the user 
enters the conclusion code in the appropriate input box 
and and clicks the CONCLUSION radiobutton.  In 
Figure 4 we can see that the top concept contains rule 18 
which concludes %OX005 and subsumes the rules and 
conclusions on descending paths.  

 

 

Figure 4: The line diagram showing which 
rules are close to the conclusion %OX005 for 

the blood gases domain.  

The rule condition for concept 1 is 
(NORMAL(BLOOD_P02)=TRUE) and is inherited by 
all lower concepts, as all rule conditions for a concept 
are reached by ascending paths. Thus, concept No. 4 
includes the conclusions %OX007 and %OX006 from 
rules 23 and 42, respectively, and has the rule 
conditions: (NORMAL(BLOOD_P02) = TRUE; (AGE 
<= 70); and (CURR(BLOOD_P02<=80) & 
(MIN(BLOOD_P02)<= 74). Thus in answer to our 
original question we can say that conclusion %OX006 
and %OX007 are close to the conclusion %OX005. The 
attributes shown on the line diagram explain in what 
way and to what degree the conclusions are close. This 

also gives the user the insight into what attributes would 
make the conclusion swing from one diagnosis to 
another which they could further explore using ‘what-if’ 
analysis. If a particular attribute or group of attributes 
appeared to warrant further investigation they could add 
those attributes to the view so that then they could look 
at the parts of the knowledge close to the conclusion 
%OX005 as well as those parts using the specified 
attributes. 

3. Future Directions 

There are a number of enhancements that can be 
made to the MCRDR/FCA prototype tool. Some general 
changes which should be made to the user interface 
relate to the limitations on the amount of information 
that can be displayed comprehensibly at one time. 
Important enhancements include the ability to drop 
nodes from the lattice or to zoom in and out using 
selections made via the concept lattice to determine what 
new contexts and concept lattices should be developed. 
Use of the fish-eye graph-drawing technique [17] may be 
desirable. 

Little has been said regarding the utility of the line 
diagram. Evaluation has been performed along a number 
of dimensions and reported in detail in [28].  In a study 
involving 12 computer science graduates it was found 
that reading the line diagram could be learnt and the 
knowledge represented and reasoned about in minutes. 
Four case studies were also conducted in four different 
domains: agriculture, chemistry, geology and pathology. 
In these studies a domain expert was asked to comment 
on the knowledge gleaned by a domain beginner (a level 
lower than novice) when exploring KB’s built for these 
domains by other people. It was found that the concept 
lattice opened up a channel of communication and 
opportunity for learning which was not possible by 
simply looking at the rules or rule traces. The generality 
of the approach to other KR and the value of the concept 
lattice as a taxonomic and ontological representation 
have also been evaluated [29].  

Extensions have been made to MCRDR/FCA which 
allow the user to develop a number (currently up to four) 
concept lattices and then to be shown a concept lattice of 
the similarities and differences between the four models. 
The user may also load the four KBS so that they can 
view the case associated with a particular rule to be used 
as a counterexample in possible discussions between 
owners of the different KBS. This feature was 
preliminary work to more recent work in the area of 
requirements engineering [30,31] which also offers 
various negotiation strategies and resolution operators. 
We are currently seeking significant funding for this 



application to allow further development and extensive 
evaluation with real users. 

While HCI issues have taken a backseat in the KBS 
community, the work being done at Stanford is a 
noteworthy exception. The PROTÉGÉ family of systems 
[15] grew from a focus on the role of the domain-expert 
and a desire to reduce reliance on a knowledge engineer. 
However, PROTÉGÉ’s approach follows mainstream 
research and emphasizes the role of ontologies and 
methods to provide mappings between the KB and 
problem solving method. Additionally, PROTÉGÉ is 
primarily concerned with the task of knowledge 
acquisition (KA) [27] rather than providing multiple 
ways of accessing and exploring knowledge by the user 
for a wide range of tasks. From an HCI point of view, 
the work in KNAVE [36] is similarly oriented to the 
system described in this paper. KNAVE facilitates 
acquisition, maintenance, sharing and reuse of temporal-
abstraction knowledge in a visual environment. The use 
of visualisation and multiple views is similar to the work 
reported in this paper but is based on a very different 
KBS paradigm. Another difference is that temporal 
abstraction has not been explored using MCRDR/FCA. 
The approach offered in  [26] to handling time-course 
data involves preprocessing of the data before 
inferencing to determine such things as 
TEMP=INCREASING. For the tasks of planning, 
monitoring and explanation it may be desirable to use 
the unprocessed data as the input to the formal context 
and to discover temporal abstractions in the data. This 
may also provide further insight into the acquisition of 
temporal knowledge.  

The concepts behind the MCRDR/FCA prototype are 
more noteworthy than the tool itself. The approach 
demonstrates that unlike most KBS approaches, it is 
feasible for domain experts to incrementally, rapidly and 
easily acquire knowledge and to later model that 
knowledge for alternative uses such as explanation or 
tutoring. Just as RDR stresses the incremental nature of 
KBS development, MCRDR/FCA systems are not 
expected to be complete but able to evolve. This 
evolution allows new activities to be added according to 
user requirements. RDR allows the user to capture a 
simple observable model of their world using attribute-
value pairs and conclusions. The user has ownership of 
the KB developed. Using FCA, the user is able to 
retrospectively view and explore their underlying 
conceptual models. The simplicity of the approach and 
the range of activities and views supported in 
MCRDR/FCA make the tool applicable to a wide range 
of decision styles and situations with the user in control 
of the way they interact with their knowledge.  
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