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Abstract

To address the data sparsity problem in recommender systems, cross-domain recom-

mendation (CDR) has in recent years leveraged the relatively richer information from

a richer (source) domain to only improve the recommendation performance in a spars-

er (target) domain with sparser information. Existing CDR approaches either directly

replace a part of the latent representation of users/items in the sparser domain with

the corresponding latent representation in the richer domain, or they map the latent

representation of common users/items in the richer domain to fit those in the sparser

domain.

First, finding an accurate mapping of the latent factors across domains is crucial

for enhancing recommendation accuracy for CDR. However, this is a challenging task

because of the complex relationships that exist between the latent factors of the source

and the target domains or systems. To this end, this thesis proposes a deep frame-

work for both cross-domain and cross-system recommendations (DCDCSR) based on

matrix factorisation (MF) models and a fully connected deep neural network (DNN).

Specifically, DCDCSR first employs the MF models to generate user and item latent

factors and then employs the DNN to map the latent factors across domains or system-

s. More importantly, this approach considers the rating sparsity degrees of individual

users and items in different domains or systems and uses them to guide the DNN train-

ing process for utilising the rating data more effectively.

Second, the existing CDR approaches are single-target approaches. However, each

of the two domains may be relatively richer in certain types of information (e.g., rat-

ings, reviews, user profiles, item details and tags). If such information can be lever-

aged well, it is thus possible to simultaneously improve the recommendation perfor-

mance in both domains (i.e., dual-target CDR) rather than in a single-target domain
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only. Thus, to achieve dual-target CDR, this thesis proposes a new framework for

dual-target cross-domain recommendation (DTCDR). In the DTCDR framework, rat-

ing and multi-source content information are first extensively used to generate rating

and document embeddings of users and items. Then, based on multi-task learning

(MTL), an adaptable embedding-sharing strategy is designed to combine and share

the embeddings of common users across domains, with which DTCDR can improve

the recommendation performance on both richer and sparser (i.e., dual-target) domains

simultaneously.

Third, inspired by DTCDR, this thesis attempts to further improve the recommen-

dation performance in both domains. There are two new challenges: (1) how to gener-

ate more representative user and item embeddings, and (2) how to effectively optimise

the user/item embeddings in each domain. To address these challenges, this thesis pro-

poses a graphical and attentional framework, called GA-DTCDR. In the GA-DTCDR

framework, two separate heterogeneous graphs are first constructed based on the rat-

ing and content information from the two domains to generate more representative

user and item embeddings. Then, an element-wise attention mechanism is proposed

for effectively combining the embeddings of common users learned from both domain-

s. Both steps significantly enhance the quality of user and item embeddings and thus

improve the recommendation accuracy in each domain.

All the above approaches proposed in this thesis have been validated and evaluated

by theoretical analysis and extensive experiments conducted on real-world datasets.

The experimental results demonstrate that the proposed methods significantly improve

the recommendation accuracies in both the richer and sparser domains, and that these

approaches outperform the state-of-the-art single-domain recommendation approach-

es, single-target CDR approaches, and dual-target CDR approaches in terms of recom-

mendation accuracy.
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Chapter 1

Introduction

1.1 Background and Significance

In the past couple of decades, recommender systems (RSs) have become a popular

technique in many web applications — such as MovieLens (video sharing), Amazon

(e-commerce) and Facebook (social networking) — and they provide suggestions of

items to users so that users avoid facing the information overload problem [92]. Col-

laborative filtering (CF) has been proven to be the most promising technique in RSs

[96]. The main goal of CF techniques is to recommend items to a user based on the

observed preferences of other users whose historical preferences are similar to those of

the target user [45]. However, in most real-world application scenarios, few users can

provide ratings or reviews for many items [92] (i.e., data sparsity), which reduces the

recommendation accuracy of matrix factorisation-based (MF-based) models [97, 4].

Almost all existing MF-based recommender systems suffer to some degree from this

long-standing data sparsity problem, especially for new items or users (the cold-start

problem). This problem may lead to over-fitting when training a CF-based model,

which significantly reduces recommendation accuracy.

To address this data sparsity problem, a new trend has emerged in recent years

that utilises the relatively richer information — such as observed ratings [58, 84, 85,

29, 42, 139, 71, 142], tags [106, 1, 47, 23], reviews [108], user/item information [19],

semantic properties [24] and thumbs-up [99] — from the richer (source) domain to

improve the recommendation accuracy in the sparser (target) domain [120, 25, 92].

1



§1.1 Background and Significance 2

Such approaches are termed cross-domain recommendation (CDR) [8]. Like CDR,

cross-system recommendation (CSR) is also an effective solution for the data sparsity

problem. CSR leverages the ratings or the knowledge derived from the source system

to improve the recommendation accuracy in the target system, in which both systems

are in the same domain [138]. For example, the Douban website’s 1 RS can recommend

books to users according to their movie reviews (i.e., CDR), since users in different

domains are likely to have similar tastes. Additionally, the movie features derived from

Netflix’s system 2 can be transferred to Douban’s system [138] (i.e., CSR) because both

Netflix and Douban have the same domain of movie reviews, which is an example of

CSR [138].

Existing CDR approaches can be classified into two groups: content-based trans-

fer approaches and feature-based transfer approaches. Content-based transfer in CDR

tends to link different domains by identifying similar content information, such as user

profiles, item details [19, 8, 120], user-generated reviews [108] and social tags [1, 23].

In contrast, feature-based transfer [58, 84, 83, 85, 138, 137, 139, 132, 142, 131, 133]

involves first training different CF-based models — such as singular value decomposi-

tion (SVD) [20], maximum-margin matrix factorisation (MMMF) [104], probabilistic

matrix factorisation (PMF) [78], bayesian personalised ranking (BPR) [91], neural

collaborative filtering (NCF) [38] and deep matrix factorisation (DMF) [123], to ob-

tain user/item embeddings or patterns, and then transferring these embeddings through

common or similar users/items across domains. In contrast to the content-based trans-

fer approaches, feature-based transfer approaches typically employ machine learning

techniques, such as transfer learning [137] and neural networks [71], to transfer knowl-

edge across domains.

Additionally, all these existing CDR approaches only focus on how to leverage the

source domain to help improve the recommendation accuracy in the target domain,

not vice versa — namely, they are single-target CDR approaches. However, each of

1This webpage can be accessed from the following URL: https://www.douban.com
2Netflix can be accessed from the following URL: https://www.netflix.com
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Target Domain (Book)

2. Transfer
(knowledge: romance movie fan)

1. Reviewed Alice

1. Reviewed?

Bob

2. Cannot Transfer
(knowledge: romance book fan)

Source Domain (Movie)

3. Recommend

3. Recommend

Movie Domain
#Ratings: 576
#Reviews: 447
#Tags: 32

Book Domain
#Ratings: 8
#Reviews: 4
#Tags: 3

Book Domain
#Ratings: 348
#Reviews: 292
#Tags: 172

Movie Domain
#Ratings: 7
#Reviews: 5
#Tags: 2

Figure 1.1: An example of a conventional single-target CDR (Movie→ Book)

the two domains may be relatively richer in certain types of information (e.g., ratings,

reviews, user profiles, item details and tags); if such information can be leveraged well,

then it is thus possible to improve the recommendation performance in both domains

simultaneously rather than only in a single target domain. This is also explained in the

following example.

Motivating Example 1. Figure 1.1 depicts a conventional single-target CDR system.

It contains two domains: a movie domain with relatively richer comments and a book

domain with sparser comments. Essentially, the conventional CDR approaches trans-

fer knowledge learned from the source movie domain to improve the recommendation

accuracy in the target book domain, but not vice versa. To exemplify a typical case,

suppose that Alice reviewed many movies (e.g., Titanic and Notting Hill) but that she

reviewed only a few books. A conventional CDR system can recommend romance

books (e.g., Pride and Prejudice) rather than Horror Stories to Alice since she is a

fan of romance movies. To exemplify a special case, suppose that Bob reviewed many

books and a few movies only. The conventional CDR system cannot make accurate

movie recommendations for him because, in principle, the knowledge learned from the
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Alice’s features (Movie)

Alice’s features (Book)

Improve

Bob’s features (Book)

Alice

Bob

Bob’s features (Movie)

Improve

Recommend

books

Inaccurate features 

(learned from sparser interactions)
Improved features

3

4

Accurate features 

(learned from richer interactions)

√

✕

?
3

Richer domain (Movie)
#Users: 2,712; #Movies:34,893; 

#Interactions: 1,278,401; Data 

density: 1.35% 

……

Sparser domain (Book) 
#Users: 2,110; #Books:6,777; 

#Interactions: 96,041; Data 

density: 0.67% 

……

Alice’s features (Book)
√

Figure 1.2: An example of a conventional single-target CDR: Movie (Richer)→ Book (Spars-
er)

sparser domain is less accurate than that learned from the richer domain. This means

that the conventional CDR system cannot work well by simply changing the transfer

direction as from the sparser domain to the richer domain.

It can be intuited, based on the existing single-target CDR approaches, that this

is a solution for dual-target CDR, by simply changing their transfer direction from

“Richer→Sparser” to “Sparser→Richer”. However, this idea — termed Negative

Transfer [82] — does not work because, in principle, the knowledge learned from the

sparser domain is less accurate than that learned from the richer domain; the recom-

mendation accuracy in the richer domain is thus more likely to decline by simply and

directly changing the transfer direction. Therefore, dual-target CDR demands novel

and effective solutions. This motivation is further explained in the following example.

Motivating Example 2. Similar to Motivating Example 1, Figure 1.2 also depicts an

example of a conventional single-target CDR system that contains two domains —

movie (the richer domain) and book (the sparser domain) — including users, items
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(movies or books) and interactions (e.g., ratings, reviews, tags). The movie domain

contains richer interactions than the book domain (1.35% v. 0.67% in data density).

To exemplify a typical case (the majority of cases in the system), suppose that Alice

reviewed 376 movies and five books. The two domains can generate her movie fea-

tures and book features respectively by using feature representation models, such as

CF models. In principle, Alice’s movie features should be more accurate than her book

features because richer interaction information can help train the feature representa-

tion models more effectively. Eventually, Alice’s improved book features can be used

to recommend matched books to her and thus improve the recommendation accuracy

in the book domain. In contrast, to exemplify a different case (the minority of cases in

the system), suppose that Bob reviewed only three movies and 196 books; Bob’s book

features would be more accurate than his movie features. However, the book features

cannot be used to improve the movie features since the single-target CDR system can

only leverage the information from the richer domain to improve the recommenda-

tion accuracy in the sparser domain. Therefore, motivated by the two types of cases

described above, a novel dual-target CDR approach is critical and must be devised.

1.2 Challenges in Cross-Domain Recommendation

1.2.1 Accurate Mapping in Single-Target CDR

The first challenge of this thesis, CH1, is represented by the following question: How

can an accurate mapping of the latent factors across domains be found for enhancing

recommendation accuracy?

The common concept of the existing transfer-based transfer approaches in CDR

is to map the latent factors obtained from a source domain (a relatively richer data

source) to a target domain (a sparser data source) for improving recommendation ac-

curacy. Therefore, accurately mapping the latent factors across domains is crucial for

enhancing recommendation accuracy in CDR.
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However, the existing transfer-based transfer approaches cannot effectively obtain

an accurate mapping of the latent factors between the two domains. They either di-

rectly replace a part of the latent factors in the target domain with the corresponding

latent factors in the source domain [139] (Category 1), or they map the latent factors of

common users/items in the source domain to fit those factors in the target domain [71]

(Category 2). The approaches in Category 1 ignore the complex relationship between

the latent factors in the two domains, while the approaches in Category 2 only focus

on the common users/items so that their relatively accurate latent factors in the source

domain can be adjusted to fit the worse factors in the target domain, which is neither

reasonable nor effective.

1.2.2 Feasible Dual-Target CDR Framework

The second challenge of this thesis, CH2, is represented by the following question:

How can a feasible framework for dual-target CDR be devised?

The novel dual-target CDR problem faces a new challenge, one that has had no so-

lutions reported in the literature — that is, how to devise a feasible framework for dual-

target CDR. As an option, multi-task learning (MTL) has the potential for dual-target

CDR because it aims to improve models’ generalisation by leveraging the domain-

specific information derived from the related recommendation tasks [94]. However,

the existing MTL-based recommendation approaches [3, 69] cannot be efficiently ap-

plied to dual-target CDR because they heavily rely on the local feature representation

and side information (additional information associated with users/items) from a sin-

gle domain. Such features and information in the sparser domain may be too sparse to

support dual-target CDR.

Additionally, multi-domain recommendation (MDR) is another potential option.

However, the proposed MDR models in [135, 80, 85, 137] achieve different goals: they

either focus on improving the recommendation accuracies of specific or common users

selected from multiple domains, or they only improve the recommendation accuracy
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on a single target domain. None of these approaches can improve the recommendation

accuracies of all users on multiple domains simultaneously. Therefore, the existing

MDR models cannot serve for dual-target CDR directly.

1.2.3 More Representative Embedding

The third challenge of this thesis, CH3, is represented by the following question: How

can data richness and diversity be leveraged to generate more representative single-

domain user/item embeddings for improving recommendation accuracy in both do-

mains?

Both traditional CF models (e.g., BPR [91]) and novel neural CF models (e.g.,

NeuMF [38] and DMF [123]) are based on the user-item relationship to learn user and

item embeddings. However, most of these models ignore the user-user and item-item

relationships, and can thus hardly enhance the quality of embeddings. To address the

data sparsity problem, multi-source information (e.g., ratings, reviews, user profiles,

item details and tags) derived from both domains should be leveraged to obtain more

general user and item embeddings.

1.2.4 Embedding Optimisation

The fourth challenge of this thesis, CH4, is represented by the following question:

How can the user or item embeddings in each target domain be effectively optimised

for improving recommendation accuracies in both domains?

State-of-the-art dual-target CDR approaches either adopt fixed combination strate-

gies (e.g., average-pooling, max-pooling and concatenation [141]) or they simply adap-

t the existing single-target transfer learning to dual-transfer learning [63]. However,

none of these approaches can effectively combine the embeddings of common user-

s/items, so it is difficult to achieve an effective embedding optimisation in each target

domain.
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1.3 Thesis Contributions

By targeting the significant challenges in CDR mentioned above, this thesis has three

major contributions.

1. The first contribution is proposing a novel approach to generating benchmark

factors that combine the features of the latent factors in both the source and

target domains or systems. The latent factors in the target domain or system are

then mapped to fit the benchmark factors. To the best of our knowledge, this

process leads to a new category of transfer-based approaches for mapping latent

factors across domains or systems — and this thesis’s approach is the first in this

novel category.

The characteristics and contributions of this framework are summarised as fol-

lows:

(a) Regarding CH1, this thesis proposes a Deep framework for both Cross-

Domain and Cross-System Recommendations (DCDCSR), which employs

MF models and a fully connected deep neural network (DNN).

(b) This thesis employs MF models to generate user and item latent factors.

When generating benchmark factors, fine-grained sparsity degrees of indi-

vidual users and items are considered to combine the latent factors learned

from both the source and target domains or systems, which can effectively

utilise more rating data in the two domains or systems.

(c) The DNN is employed to accurately map the latent factors in the target

domain or system to fit the benchmark factors, which can improve recom-

mendation accuracy.

(d) The extensive experiments conducted on three real-world datasets demon-

strate that the DCDCSR framework outperforms the state-of-the-art ap-

proaches and that it clearly improves the recommendation accuracy for

both CDR and CSR.
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2. The second contribution is proposing a new framework for dual-target CDR.

To the best of our knowledge, this research is the first work in the literature to

propose the novel problem of dual-target CDR and provide a solution for it. The

relevant characteristics and contributions of this framework are summarised as

follows:

(a) Regarding CH2, a novel framework is proposed for Dual-Target CDR

(DTCDR), which can leverage the data richness and diversity of dual do-

mains, share the knowledge of common users across domains, and improve

the recommendation accuracies for all users in both domains simultaneous-

ly.

(b) Regarding CH3, multi-source text information (reviews, tags, user pro-

files and item details) is considered to generate the document embeddings

of users and items by using Doc2Vec, as well as to optimise two rating

embedding models (i.e., NeuMF and DMF) to generate the rating embed-

dings of users and items. Then, based on MTL, an effective embedding-

sharing strategy is designed and three representative combination operators

are chosen (i.e., Concatenation, Max-Pooling and Average-Pooling) to re-

spectively combine the text and rating embeddings of common users. They

can synthesise these embeddings in diverse ways and make the DTCDR

framework adaptable to different scenarios.

(c) The extensive experiments conducted on real-world Douban and Movie-

Lens datasets demonstrate that the DTCDR approach significantly outper-

forms the state-of-the-art single-domain (SDR) and CDR approaches in

terms of recommendation accuracy.

3. The third contribution is proposing a novel graphical and attentional approach

for dual-target CDR. The characteristics and contributions of this work are sum-

marised as follows:
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(a) Regrading CH2, this thesis proposes a Graphical and Attentional frame-

work for Dual-Target Cross-Domain Recommendation (GA-DTCDR), which

can leverage the data richness and diversity of dual domains (e.g., ratings,

reviews and tags), share the knowledge of common users across domains

and make recommendations in both domains.

(b) Regrading CH3, a heterogeneous graph is constructed that considers not

only user-item relationships (based on ratings) but also user-user and item-

item relationships (based on content similarities). With this heterogeneous

graph, a graph embedding technique (i.e., Node2vec) is then applied to

generate more representative single-domain user and item embeddings for

accurately capturing user and item features.

(c) Regarding CH4, an element-wise attention mechanism is proposed to intel-

ligently and effectively combine the embeddings of common users learned

from both domains. This mechanism trains two separate element-wise at-

tention networks for the two target domains respectively, which can sig-

nificantly enhance the quality of user embeddings and thus improve the

recommendation accuracy in both domains simultaneously.

(d) Extensive experiments are conducted on four real-world datasets and demon-

strate that the GA-DTCDR approach significantly outperforms the best-

performing baselines in all cases by an average of 8.46% in terms of rec-

ommendation accuracy.

1.4 Thesis Roadmap

The remaining thesis chapters are structured as follows.

Chapter 2 begins with a comprehensive literature review on SDR, single-target

CDR and dual-target CDR. It also presents a brief literature review on other highly

relevant fields such as MTL, graph embedding and attention mechanism.
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Chapter 3 presents the DCDCSR framework, based on MF models and a fully

connected DNN. This chapter includes our paper that was published at IJCAI 2018

[142].

Chapter 4 presents the DTCDR framework that can improve the recommendation

performance in both source and target domains simultaneously. It includes our paper

that was published at CIKM 2019 [141].

Chapter 5 presents the GA-DTCDR framework that can leverage the data richness

and diversity of dual domains, share the knowledge of common users across domains

and make recommendations in both domains. This chapter includes our paper that was

accepted by IJCAI 2020 in April 2020.

Finally, Chapter 6 concludes the research in this thesis and offers directions for

future research opportunities.



Chapter 2

Literature Review

In this chapter, according to recommendation problems, the related literature in three

main categories mentioned in Sections 2.1, 2.2 and 2.3 are reviewed respectively: (1)

single-domain recommendation (SDR), (2) single-target cross-domain recommenda-

tion (STCDR) and (3) dual-target cross-domain recommendation (DTCDR). Addition-

ally, according to the techniques we employ in this thesis, we also briefly review the

related literature about (4) multi-task learning (MTL), (5) graph embedding and (6)

attention mechanism. In particular, because multi-task learning is employed for the

first dual-target CDR framework (i.e., DTCDR), this chapter reviews the related liter-

ature about MTL in Section 2.4. To further improve the recommendation accuracies

in both domains simultaneously, a new dual-target CDR solution is proposed by using

a graph embedding technique to learn the content embedding of users and items, and

an attention mechanism to combine common users’ or items’ embedding. Therefore,

this chapter also reviews the related literature about graph embedding in Section 2.5

and attention mechanism in Section 2.6.

This chapter is organised as follows:

- Section 2.1 introduces the existing SDR approaches, including rating-based ap-

proaches and content-based approaches.

- Section 2.2 introduces the existing single-target CDR approaches, including

content-based transfer approaches and feature-based transfer approaches.

- Section 2.3 introduces the existing dual-target CDR approaches.

12
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- Section 2.4 introduces related MTL approaches.

- Section 2.5 introduces the related approaches in graph embedding.

- Section 2.6 introduces the related attention mechanism.

- Section 2.7 presents a summary of the existing studies.

2.1 Single-Domain Recommendation

According to the focus of this thesis, the existing SDR approaches are summarised in

two groups: rating-based approaches and content-based approaches. There are many

SDR approaches in the literature; but this thesis only reviews those that are highly

relevant to its focus. For a clear comparison, these approaches are listed in detail in

Tables 2.1 and 2.2.

2.1.1 Rating-Based SDR

Conventional single-target recommender approaches have largely focused on making

item recommendations that are based on observed ratings in a single domain. These

approaches are thus classified as rating-based single-target recommendation (rating-

based SDR). These rating-based approaches can be generally classified into two broad

categories according to different techniques, i.e., MF-based approaches [104, 7, 78, 91]

and neural network-based (NN-based) approaches [18, 38, 123]. The MF-based ap-

proaches opt for learning a linear relationship between users and items, and their goals

are to minimise the square or ranking loss between the observed and predicted ratings.

In contrast, the NN-based approaches apply a DNN such as multi-layer perceptron

(MLP) to learning a non-linear user-item interaction function and their goals are to

minimise the loss between the observed and predicted interactions derived from rat-

ings. These MF and NN-based approaches are introduced in the following sections.



§2.1 Single-Domain Recommendation 14

Table 2.1: The comparison of existing SDR approaches (Part 1)

Category Representative approaches Technology adoption
or basic idea

Rating-Based

MF-Based

MMMF –
Srebro et al. [104] Low-norm factorisation

Bell et al. [7]
Singular value
decomposition

(SVD) [31]
Koren et al. [52] SVD

Takacs et al. [107] SVD
PMF –

Mnih et al. [78]
Gaussian distribution

MF –
Koren et al. [53]

Matrix factorisation

RankBoost –
Freund et al. [26]

Rating ranking
minimisation

RankNet –
Burges et al. [10]

Rating ranking
minimisation

BPR –
Rendle et al. [91]

Rating ranking
minimisation

RankSVM –
Chapelle et al. [14]

Rating ranking
minimisation

NN-Based
Cheng et al. [18] Wide & deep learning

NeuMF –
He et al. [38] Wide & deep learning

DMF –
Xue et al. [123] Deep learning

2.1.1.1 Matrix Facotrisation-Based Approaches

First, inspired by large-margin linear discrimination, Srebro et al. in [104] proposed

a maximum-margin matrix factorisation (MMMF) approach to learning a fully pre-

dicted rating matrix to fit the observed rating matrix by minimising a trace norm and

maximising the corresponding predictive margin. MMMF tends to apply low-norm

factorisations rather than low-rank factorisations, which can avoid convex optimisa-

tion problems.

Then, based on the common idea of singular value decomposition (SVD) [31], the
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Table 2.2: The comparison of existing SDR approaches (Part 2)

Category Representative approaches Technology adoption
or basic idea

Content-based

Mooney et al. [79]
Information extraction
& text categorisation

LDA –
Blei et al. [9]

Topic modelling

CTR –
Wang et al. [116]

factorisation
&topic modelling

HFT –
Mcauley et al. [74]

factorisation
&topic modelling

TopicMF –
Bao et al. [6]

factorisation
&topic modelling

approaches proposed in [7, 52, 107] map both items and users into the same latent

factor space. These latent factors can represent implicit user preferences and item

features respectively, and the inner product of user latent factors and item latent factors

can be treated as the predicted ratings from the users to the items.

Next, in [78], Mnih et al. proposed a probabilistic matrix factorisation (PMF)

model which scales with the number of observed ratings. This model performs well

on the large Netflix dataset. PMF is a probabilistic model with Gaussian observation

noise, and its core idea is to maximise the conditional distribution over the observed

ratings.

In [53], Koren et al. proposed an MF approach for RSs that won the Netflix Prize

competition in 2009. Unlike the classic nearest-neighbour approaches for item rec-

ommendations, the proposed MF can leverage additional information such as implicit

feedback, temporal effects and confidence levels, which can significantly improve the

recommendation performance.

Unlike the above conventional rating-oriented approaches, ranking-oriented ap-

proaches, such as RankBoost [26], RankNet [10], BPR [91] and RankSVM [14], tend

to optimise a loss function defined on users’ pairwise preferences, as well as minimise

the loss between the observed rating rankings and the predicted rating rankings.
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2.1.1.2 Neural Network-Based Approaches

In [18], Cheng et al. proposed a joint framework to train both linear models and

deep neural networks for single-target recommendation. This Wide & Deep learning

can combine the advantages of memorisation and generalisation, which significantly

improves the conventional wide-only and deep-only models.

Recently, neural matrix factorisation (NeuMF) [38] is a novel framework that re-

places the dot product of the traditional MF with a non-linear relation (a neural net-

work). Since the traditional neural network (i.e., MLP) [105], has difficulty in captur-

ing low-rank relations, NeuMF combines MF and MLP into one model that can repre-

sent both wide and deep embeddings of users and items by learning implicit feedback.

Unlike NeuMF, deep matrix factorisation (DMF) [123] considers both implicit and

explicit feedback. The core idea of DMF is evaluating the cosine similarities between

user and item latent factors learned by their corresponding ratings. The cosine simi-

larity between a user and an item can be treated as the predicted rating from the user

to the item. Additionally, to consider both implicit and explicit feedback in the loss

function, DMF improves the loss function of NeuMF by a normalised cross-entropy

loss.

2.1.2 Content-Based Single-Domain Recommendation

Apart from rating-based SDR approaches, there are also content-based approaches

[79, 9, 74, 65, 6] that focus on modelling both observed ratings and content informa-

tion. The collaborative topic regression (CTR) model proposed in [116] is a major

breakthrough for article (or citation) recommendation, which tends to combine the

advantages of traditional CF and topic modelling. The models in [74, 6] attempt to

combine the latent factors learned from ratings with the latent review topics learned

from contents by the topic models, which can explore more prior knowledge on users

and items. These content-based SDR approaches are introduced below.

To predict the unknown rating from a target user to an item, conventional CF-based
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approaches mainly focus on the preferences of the user’s neighbours. In contrast to

these conventional CF-based approaches, Raymond et al. in [79] proposed a content-

based SDR approach that uses content information about an item itself to make book

recommendations. This approach is based on information extraction and text categori-

sation.

In [9], Blei et al. proposed the latent Dirichlet allocation (LDA), a generative

probabilistic model for text information that can generate the latent topics of users and

items. LDA has become a basic technique for modelling latent topics in many content-

based RSs. The basic concept of LDA is that the text information of users and items is

represented as random mixtures over latent topics.

In [116], Wang et al. proposed the collaborative topic regression (CTR) approach

for recommending scientific articles to users. This approach combines the benefits

of traditional latent factor models and probabilistic topic models. Based on latent

factor models, CTR can use the information from other users’ libraries and recommend

matched known articles to a target user. Additionally, based on topic modelling, CTR

can generate the latent representation of the article and recommend matched unknown

articles that have similar content to others that a target user likes.

In [74], McAuley et al. proposed the hidden factors as topics (HFT) approach, a

content-based approach that combines latent factors with latent review topics. Specifi-

cally, HFT extracts highly interpretable labels for latent factors learned by latent factor

models. These labels can help judge whether the latent factors are accurate or not.

To address the data sparsity problem in a single domain, Bao et al. in [6] proposed

TopicMF, an MF model that considers both the ratings and the review texts. They

applied a biased MF for rating prediction and a topic modelling technique for latent

topic modelling. They then combined the latent factors learned by the biased MF

and the latent topics learned by the topic modelling. Compared with conventional

latent factor models, TopicMF can leverage rich review information and thus improve

recommendation accuracy.
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2.1.3 Single Domain Recommendation: A Summary

Existing rating-based SDR approaches are mainly based on the notion of CF and lever-

age the known rating information to learning a linear (e.g., MF) or non-linear (e.g.,

neural networks) relation between users and items. These approaches can work well

for recommending known items. Conventional rating-based SDR approaches tend to

employ factorisation methods (e.g., low-norm factorisation, SVD and MF) to generate

the latent factors of users and items. In addition to these factorisation-based approach-

es are ranking-oriented approaches, which focus on minimising the rating ranking loss.

Recently, based on Wide & Deep learning, some novel rating-based SDR approaches

focus on learning a non-linear relationship between users and items.

Additionally, to improve the recommendation accuracy for unknown items, content-

based SDR approaches are proposed to leverage the content information of users and

items so that the content similarities between two items or two users can be mea-

sured. The content similarities can help recommend matched items to a target user.

These approaches tend to employ information extraction techniques and topic mod-

elling techniques to leverage useful content information.

However, all these SDR approaches are constrained by limited data from a single

domain, regardless of whether the data is derived from rating information or content

information. This means that there are some difficulties in using these approaches

to further solve the data sparsity problem — which is the fundamental motivation of

proposing CDR.

2.2 Single-Target Cross-Domain Recommendation

Most of existing single-target CDR approaches tend to leverage useful information

from the source domain to the target domain. According to transfer strategies, these

single-target CDR approaches are reviewed in two categories: content-based transfer

and feature-based transfer.
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- Content-based transfer. These approaches first create links based on the com-

mon contents, e.g., user/item attributes [8, 57], social tags [106, 1, 47, 101, 23],

semantic properties [24, 55, 130], thumbs-up [99], text information [110, 108],

metadata [95], browsing or watching history [21, 48]. Then they transfer user

preferences or item details across domains.

- Feature-based transfer. These approaches employ some classical machine

learning models — such as MTL [102, 3, 69], transfer learning [59, 84, 138,

61, 115, 139, 89, 132, 40, 98, 37, 131, 133, 41, 73, 43, 62], clustering [90, 88,

22, 119], reinforcement learning [66], deep neural networks [46, 71, 142, 36,

27, 67], relational learning [103] and semi-supervised learning [49], to map or

share features, e.g., user/item latent factors and rating patterns [58, 29, 37, 128],

learned by MF models across domains.

Additionally, [135, 80, 85, 137] proposed multi-domain models, but they either

tend to make recommendations for specific or common users that are selected from

domains, or only for the users in the target domain. In contrast, this thesis’s proposed

DTCDR and GA-DTCDR frameworks aim to achieve a different goal — making rec-

ommendations for all users in both the source and target domains.

For a clear comparison, these single-target CDR approaches are listed in detail in

Tables 2.3 - 2.7.

2.2.1 Content-Based Transfer

Existing content-based transfer approaches tend to leverage different types of content

information from the source domain to address the data sparsity problem in the target

domain. The content information is treated as a bridge that links the two domains.

According to the types of content information, we classify these content-based trans-

fer approaches into the following seven sub-categories, i.e., user/item attributes, social

tags, semantic properties, thumbs-up, text information, metadata, browsing or watch-

ing history.
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Table 2.3: The comparison of existing single-target CDR approaches (Part 1)

Category Representative approaches Technology adoption
or basic idea

Content
-based

transfer

User/item
attributes

Berkovsky et al. [8]
Multi-source
information

CLARE –
Leung et al. [57]

User-item & item-item
relationships

Social tags

Szomszor et al. [106]
Co-occurrence

sub-graph

Abel et al. [1]
Profile semantic

enhancement
Kaminskas et al. [47] Tag similarity

TagCDCF –
Shi et al. [101]

Tag similarity

TagGSVD++ –
Fernandez et al. [23]

Rating-tag similarity

Semantic
properties

Fernandez et al. [24]
Weighted directed

acyclic graph
Kumar et al. [55] Semantic similarity
Zhang et al. [130] Semantic correlation

Thumbs-up Shapira et al. [99] Preference similarity

2.2.1.1 User/Item Attributes

In [8], Berkovsky et al. first proposed CDR to address the data sparsity problem for

CF recommenders. In this study, the authors leveraged four types of user modelling

data: user models that were learned from the source domain, lists of the neighbours,

similarity degrees between the active user and the other users, and predicted ratings

that were generated from the source domain. The authors then imported and aggregat-

ed the vectors of users’ ratings that were learned from different application domains to

improve the prediction accuracy.

Further, in [57], Leung et al. proposed Cross-Level Association RulEs, a hybrid

CDR approach that addresses the cold-start problem. They integrated the content in-

formation from the items of two different domains into the conventional CF model-

s. Specifically, they first applied a preference model to represent both user-item and
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Table 2.4: The comparison of existing single-target CDR approaches (Part 2)

Category Representative
approaches

Training
data

Technology adoption
or basic idea

Content
-based

transfer

Text information

CTL –
Tang et al. [110]

Topic modelling

Tan et al. [108]
Topic modelling

& transfer learning
Sahebi et al. [95] User similarity

Browsing or
watching history

Elkahky et al. [21] Multi-view learning

Kanagawa et al. [48]
Unsupervised domain

adaptation

item-item relationships, and then, based on this preference model, they made recom-

mendations for cold-start items.

2.2.1.2 Social Tags

The two approaches described above tend to apply the common user/item attributes

from the two domains to improve recommendation accuracy. Apart from user/item

attributes, social tags also helpfully address the data sparsity problem in CF because

social tags are an important source of cross-domain user preferences. In [106], Szom-

szor et al. proposed an approach for recommending a set of social tags to annotate

a bookmarked document. In this study, the authors processed the bookmark textual

contents and then abstracted a set of keywords from these contents. Finally, based on

the keywords (tags), they built a co-occurrence sub-graph to make recommendations.

In [1], Abel et al. performed a profile semantic enhancement process by grouping tags

into WordNet categories. The experimental results revealed that the integrated profiles

from two different domains can improve recommendation quality. In [47], Kaminskas

et al. proposed a location-adapted music recommendation approach that could apply

the emotional tags of users to two different domains (i.e., music and places of interest

[POIs]). This approach matches music tracks and POIs by considering their tag simi-

larities and then making music recommendations according to users’ POIs. In [101],
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Shi et al. proposed the tag-induced cross-domain collaborative filtering (TagCDCF)

approach, which leverages social tags to improve recommendation accuracy. TagCD-

CF uses tag-based similarities to link two domains, and thus does not require com-

mon users or items. Additionally, in [23], Fernandez et al. proposed TagGSVD++,

a content-based CDR approach that shares the social tags across domains. Based on

SVD++ (a variety of SVD) [52], TagGSVD++ can generate more representative latent

factors of users and items that can better capture the effects of social tags on ratings.

2.2.1.3 Semantic Properties

In addition to user/item attributes and social tags, semantic properties are also impor-

tant for improving the recommendation accuracy in CDR scenarios. Fernandez et al.

proposed a semantic-based framework for CDR [24] that can automatically extract

useful information from two different domains and then link the concepts of the two

domains by using a weighted directed acyclic graph. In the study’s experiments, this

approach could effectively recommend music artists to users by identifying the related

POIs in the source domain. In [55], Kumar et al. proposed a semantic clustering-based

approach (i.e., SCD) for CDR, in which a common semantic space is shared across do-

mains. SCD applies a topic model to generate user/item latent topics and applies an

ontology model to measure semantic similarities between textual words from different

domains.

Recently, Zhang et al. [130] leveraged tag information as a bridge to link two

domains. They considered the semantic correlations from the overlapping tags and

applied these correlations to make recommendations. Specifically, they applied the

word2vec model to learning the latent representations of tags — and these representa-

tions can be treated as a bridge for sharing across domains.
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2.2.1.4 Thumbs-up

In [99], the thumbs-up function is important auxiliary information for improving the

recommendation performance in CDR scenarios. In their study, Shapira et al. lever-

aged auxiliary social data (Facebook preference data; users’ favourite items) to im-

prove the recommend accuracy on other domains. For the cold-start users in these

experiments, which were only based on Facebook social data, their approach also

achieved a pretty good performance (i.e., it was no less accurate than what was ob-

tained from user ratings).

2.2.1.5 Text Information

In [110], Tang et al. proposed a cross-domain topic learning (CTL) model for rec-

ommending research articles to users. CTL consolidates the collaborations by topic

layers rather than by author layers because author connections between two domains

are rare. Additionally, CTL generates the latent topics in the source and target domains

separately, and it only models relevant topics between the two domains.

In [108], Tan et al. utilised text information from the source domain to improve

the recommendation accuracy in the target domain. This approach is based on LDA

[9], with its core concept being the transfer of user interests across domains. Tan et

al. extracted documents (text information) from different domains and then combined

the text information with ratings. They modelled user interests in the common topic

space and, based on this space, could recommend matched items to users in the target

domain.

2.2.1.6 Metadata

In [95], Sahebi et al. leveraged user metadata to improve the recommendation accura-

cy in CDR scenarios by proposing a generic framework for content-based CDR. Com-

pared with traditional CDR approaches, these authors introduced user-based domains

rather than item-based domains, which signifies that they distinguished the different
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domains according to the types of users (e.g., young and old) rather than the types of

items (e.g., movie and book).

2.2.1.7 Browsing or Watching History

Based on multi-view learning, Elkahky et al. [21] leveraged the auxiliary web-browsing

history and search queries from a source domain to improve the recommendation ac-

curacy in a target domain. This approach involves jointly learning item features from

different domains and user features by using a multi-view deep-learning model.

Additionally, Kanagawa et al. posited a content-based CDR framework for cold-

start users [48]. This framework does not require common users or items to be a

bridge linking the two domains. The general concept of this framework is treating

the recommendation task as a classification task, with the classification task being an

instance of unsupervised domain adaptation.

2.2.2 Feature-Based Transfer

Feature-based transfer is the most popular category of the existing CDR approaches,

and its general description involves transferring knowledge (e.g., user/item latent fac-

tors and rating patterns) from the source domain to help the target domain. According

to the techniques, the features-based transfer approaches are classified into the follow-

ing five subcategories: MTL, transfer learning, clustering, deep neural networks and

others.

2.2.2.1 Multi-Task Learning-Based Approaches

MTL is a classical technique used for single-target CDR. Based on MTL, RSs can

leverage the data from multiple views or sources and the knowledge from multiple

learning tasks to improve the recommendation accuracy in the target domain. This

section briefly introduces the representative works in this field below.

To address the longstanding data sparsity problem in CF, Singh et al. suggested a
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Table 2.5: The comparison of existing single-target CDR approaches (Part 3)

Category Representative
approaches

Training
data

Technology adoption
or basic idea

Feature
-Based

Transfer

Multi-task
learning

CMF –
Singh et al. [102]

Ratings
& item details

Multiple relations

LMF –
Agarwal et al. [3]

Multiple
contexts

multi-task learning

Lu et al. [69] Ratings Multi-task learning

Transfer
learning

RMGM –
Li et al. [59]

Ratings Transfer learning

CST –
Pan et al. [84]

Heterogeneous
feedback

Principle coordinates

Zhao et al. [138] Ratings Active transfer learning
Li et al. [61] Ratings Transfer learning

Wang et al. [115] Mails Mailing list similarity
Zhao et al. [139] Ratings Active transfer learning

Rafailidis et al. [89] Ratings Transfer learning
CIT –

Zhang et al. [132]
Ratings Consistent information

KerKT –
Zhang et al. [131]

Ratings
Domain adaptation &

diffusion kernel completion
ProbKT –

Zhang et al. [133]
Ratings Feature combination

CoNet –
Hu et al. [40]

Ratings Neural networks

Shang et al. [98] Ratings Transfer learning

collective matrix factorisation (CMF) framework that was based on relational learning

in their study [102]. They considered encoding users’ ratings, movies’ genres and

actors’ roles in different relations; they could thus improve the predictive accuracy in

relation by leveraging the information from another relation.

Further, Agarwal et al. proposed a localised matrix factorisation (LMF) approach

in [3]. LMF combines multiple contexts to improve the recommendation accuracy

in the target domain. In LMF, the local factors learned from different contexts are

linked to a shared global model, rather than the different local factors of an entity (a
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Table 2.6: The comparison of existing single-target CDR approaches (Part 4)

Category Representative
approaches

Training
data

Technology adoption
or basic idea

Feature
-Based

Transfer

Transfer
learning

TMH –
Hu et al. [41]

Ratings
& text

Transfer learning &
memory networks

Manotumruksa
et al. [73]

Ratings Transfer learning

LSCD –
Huang et al. [43]

Ratings Transfer learning

Clustering

PCLF –
Ren et al. [90]

Ratings Clustering

JCSL –
Rafailidis et al. [88]

Ratings User clustering

C3R –
Farseev et al. [22]

Ratings Clustering

CDIE-C –
Wang et al. [119]

Ratings Clustering

Deep neural
networks

Jaradat et al. [46] Ratings
Textual input

relations
EMCDR –

Man et al. [71]
Ratings

Linear matrix
translation & MLP

He et al. [36] Ratings
Bayesian

neural networks
RC-DFM –

Fu et al. [27]
Ratings

& content
Stacked Denoising

Autoencoders
ACDN –

Liu et al. [67]
Ratings

Aesthetic
preferences

user or an item) being enforced to be the same. This approach is an EM algorithm

that contains two steps — the E-step, which involves two main operations (bottom-

up filtering and top-down smoothing), and the M-step, in which the algorithm mainly

focuses on parameter estimating.

Additionally, Lu et al. proposed a CDR approach in [69] that can predict unknown

ratings, as well as explain the recommendation results. With the help of combined

MF, this approach can predict unknown ratings more accurately, and with the help of

an adversarial sequence, it can apply sequence learning to explain the recommendation
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Table 2.7: The comparison of existing single-target CDR approaches (Part 5)

Category Representative
approaches

Training
data

Technology adoption
or basic idea

Feature
-Based

Transfer
Others

TCB –
Liu et al. [66]

Ratings
Reinforcement

learning
Sopchoke
et al. [103]

Ratings
Relational
learning

SSCDR –
Kang et al. [49]

Ratings
Semi-supervised

learning
CBT –

Li et al. [58]
Ratings

Transfer learning
for rating patterns

Li et al. [60] Ratings
Bayesian latent factor

models & interest Drift

Gao et al. [29] Ratings
Transfer learning
for rating patterns

CDTF –
Hu et al. [42]

Explicit and
implicit feedback

Triadic relation
(user-item-domain)

Loni et al. [68] Ratings Interaction patterns
He et al. [37] Ratings Transfer learning

Ma et al. [70] Item sequences
Sequential

recommendations
NATR –

Gao et al. [28]
Items’ information Privacy security

DARec –
Yuan et al. [128]

Ratings
Transfer learning
for rating patterns

generation.

2.2.2.2 Transfer Learning-Based Approaches

Transfer learning is the most popular technique in single-target CDR. Based on transfer

learning, there are many approaches that are proposed to achieve single-target CDR.

Next, this thesis will briefly introduce representative and state-of-the-art works.

In [59], and based on transfer learning, Li et al. suggested a rating-matrix genera-

tive model (RMGM) for CDR. RMGM shares a common implicit cluster-level rating

matrix that can pool the rating data from different domains. Based on this shared rating
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matrix, RMGM can predict unknown ratings and thus recommend matched items to

users. The experimental results indicated that this approach can gain auxiliary useful

knowledge from other domains to improve recommendation performance.

Pan et al. proposed the coordinate system transfer (CST) in [84], a new trans-

fer learning-based framework for CDR. In this study, Pan et al. found that the user

feedback from domains is heterogeneous, and that they should thus consider the data

heterogeneity in CST. They extracted the principle coordinates of both users and items

and then transferred these coordinates to reduce data sparsity in the target domain. In

their experiments, CST can outperform both the non-transfer baselines (e.g., average

filling) and the transfer baselines (e.g., CMF).

Centring on active transfer learning, Zhao et al. proposed a framework for CSR

in [138]. This approach can be applied in both CDR and CSR scenarios. This study

mainly focuses on constructing entity correspondence to transfer useful knowledge

across RSs. In each training period, the proposed approach selects a certain number

of relevant users whose latent factors are the worst in the target domain. These latent

factors are then replaced by the corresponding latent factors in the source domain and,

after many iterations, the whole recommendation performance in the target domain is

improved eventually. This active transfer learning framework is based on the latent

factor model, MMMF. In [139], Zhao et al. extended their framework that was pro-

posed in [138] so that it was based on the other two MF models (RLMF and PMF);

they thus posited a unified framework for CSR.

Li et al. suggested a cross-domain framework that improves the recommendation

quality in the target domain in [61]. First, they identified the overlaps between users

and/or items (common users or items) and then transferred the useful knowledge that

was learned from the source domain to help the target domain.

Recently, based on transfer learning, Zhang et al. proposed a series of approach-

es for single-target CDR [132, 131, 133]. Unlike the traditional single-target CDR

approaches, in [132], Zhang et al. proposed a consistent information transfer (CIT)

approach which can make sure the knowledge extracted from the source domain is
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consistent with the target domain. In [131], they further proposed a kernel-induced

knowledge transfer (KerKT) approach which employs domain adaptation techniques

to transfer knowledge for overlapping entities, and employs a diffusion kernel to corre-

late the non-overlapping entities. Also, in [133], they proposed a probabilistic knowl-

edge transfer (ProbKT) approach which combines the domain-shared knowledge and

the domain-specific knowledge to further improve the recommendation accuracy.

There have recently been many other approaches that are based on transfer learning

for single-target CDR [115, 89, 98, 40, 41, 73, 43]. Most tend to transfer useful infor-

mation or knowledge from a source domain to help a target domain. In [115], Wang

et al. transferred the knowledge that was learned from similar mailing lists that could

provide useful extra information for broadcast email prioritisation in a target mailing

list. In [89], Rafailidis et al. posited a collaborative ranking approach for CDR that

uses a weighting strategy to control the importance of latent factors of common users

from different auxiliary domains. In [98], Shang et al. proposed a probabilistic MF

approach for CDR that leverages the auxiliary ratings and user demographics from the

source domain to help the target domain.

Additionally, based on transfer learning, Huang et al. posited a low-rank and s-

parse cross-domain (LSCD) approach for CDR that extracts the latent factors of users

and items for each respective domain [43]. Hu et al. proposed a transfer-learning

framework for CDR called collaborative cross networks (CoNet) in [40]. CoNet uses

neural networks for learning complex user-item interaction relations, as well as cross-

mappings for connecting two base networks and transferring the knowledge from one

to another. In [41], Hu et al. proposed another framework for CDR, called transfer

meeting hybrid (TMH), which also considers unstructured text information. This s-

tudy involved first extracting useful content information by using a memory network

and then selectively transferring knowledge across domains by using a transfer net-

work. In [73], Manotumruksa et al. posited a transfer learning-based CDR approach

to make venue recommendations.



§2.2 Single-Target Cross-Domain Recommendation 30

2.2.2.3 Clustering-Based Approaches

In addition to transfer learning-based approaches, there are single-target CDR ap-

proaches that are based on clustering [90, 88, 22, 119]. In [90], Ren et al. suggested

a novel probabilistic cluster-level latent factor (PCLF) framework for CDR that cap-

tures the diversities among different domains. In [88], Rafailidis et al. posited a joint

cross-domain user clustering and similarity learning (JCSL) framework, which makes

cross-domain recommendations by focusing on clustering users and transfer useful

knowledge for similar users across domains.

Additionally, Farseev et al. suggested a cross-network collaborative recommen-

dation framework based on multi-view social data called C3R, which includes both

individual and group knowledge [22]. In [119], Wang et al. proposed a cross-domain

item embedding framework based on co-clustering (CDIE-C) that considers single-

domain and cross-domain sessions.

2.2.2.4 Deep Neural Networks-Based Approaches

Neural networks are widely used in existing CDR approaches [71, 46, 36, 27, 67]. In

[71], Man et al. proposed the embedding and mapping framework for CDR (EMCDR).

EMCDR applies a linear mapping strategy [77] — linear matrix translation — and a

non-linear mapping strategy [105] — MLP — to map the latent factors of common

users/items from the source domain and to fit them in the target domain. EMCDR uses

the two latent factor models MF [53] and BPR [91] to generate the latent factors of

users and items. After the mapping process, the affine latent factors can improve the

quality of latent factors in the target domain. The training process aims to minimise

the mapping loss from the source domain to the target domain.

Additionally, Jaradat et al. focused on neural networks and first considered the

relations between visual and textual inputs; they then transferred useful knowledge

from complex domains for the purpose of efficient recommendations [46]. In [36], He

et al. posited a CDR framework, based on a Bayesian neural network, that bestowed
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flexible weights on the latent factors that were learned from different domains. In [27],

Fu et al. proposed the review and content-based deep fusion model (RC-DFM) for

CDR. Based on four stacked denoising autoencoders models, RC-DFM fuses review

texts and item details with the rating matrix. Therefore, the latent factors that are

learned in this way remain both ratings and content information. Finally, RC-DFM

applies MLP to transfer knowledge across domains. In [67], Liu et al. suggested

the deep aesthetic cross-domain network (ACDN), which considers personal aesthetic

preferences and shares these preferences across domains to improve recommendation

accuracy.

2.2.2.5 Others

There are other single-target CDR approaches that are based on different techniques

and ideas. This subsection briefly introduces some of these representative works.

In [60], Li et al. attempted to study a new direction in CDR: cross-domain CF

over time. The authors proposed a temporal-domain CF framework that shares the

static rating matrix across domains and captures the user-interest drift over time. This

proposed method is based on a Bayesian latent factor model called Bi-LDA [87].

To further improve the recommendation performance of existing CDR approaches,

Hu et al. [42] posited a generalised cross-domain triadic factorisation (CDTF) model

that considers the triadic relation (i.e., the user-item-domain relation). This triadic

relation can effectively represent the interactions between domain-specific user latent

factors and item latent factors. Additionally, this study leverages both explicit and

implicit feedback to address the data sparsity problem.

In [68], Loni et al. suggested a factorisation machines-based approach for CDR.

The basic concept of this approach involves first generating the latent factors in each

domain using factorisation machines, then leveraging user interaction patterns to trans-

fer knowledge across domains. In the study’s experiments, this approach had lower

computational complexity and a better recommendation performance when compared

to the baselines.
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Using a classical reinforcement learning model (i.e., contextual bandit) as a basis,

Liu et al. posited a framework for CDR called transferable contextual bandit (TCB)

[66]. The contextual bandit policy can gradually exploit and explore user interests.

The proposed TCB not only benefits the exploitation process in each domain, but it

also improves the exploration process in the target domain. In turn, the training of

the exploration process can help inform how the knowledge across domains can be

transferred.

As introduced above, MTL, transfer learning, neural networks and reinforcemen-

t learning have been widely used in existing CDR approaches. In addition to these

techniques, relational learning [103] and semi-supervised learning [49] are also ap-

plied in CDR. In [103], Sopchoke et al. employed relational learning to generate the

rules that can explain why items were recommended to a target user. In [49], Kang

et al. proposed a semi-supervised learning-based CDR framework (SSCDR) that can

effectively map the latent factors across domains.

Many of the existing CDR approaches tend to leverage common users as a bridge

that links two domains, and they tend to share their latent factors or rating patterns

across domains. However, in [28], Gao et al. believed that the personal information

and operating information of users in many RSs are not easily shared in public. There-

fore, the authors suggested a CDR approach — the neural attentive-transfer recom-

mendation (NATR) approach — that does not share any user information. In NATR,

only the items’ information is considered, and the item embedding is transferred across

domains.

Most of the existing single-target CDR approaches tend to transfer latent factors

across domains. In contrast to these approaches are CDR approaches that transfer

rating patterns across domains [58, 29, 37, 128]. Li et al. proposed another CDR

framework, the codebook-based knowledge transfer (CBT) framework, for movie rec-

ommendations [58]. Unlike RMGM, this CBT tends to transfer the rating patterns

from a dense auxiliary domain to a sparse target domain (movie domain→ book do-

main). CBT does not require user or item overlap (i.e., common users or items). In-
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Table 2.8: The comparison of existing MDR approaches

Category Representative
approaches

Training
Data

Technology adoption
or basic idea

Multi
-Domain

Recommendation

MCF –
Zhang et al. [135]

Ratings
Transfer learning

& PMF
Moreno et al. [80] Ratings Feature combination

TCF –
Pan et al. [83, 85]

Binary ratings Transfer learning

Zhang et al. [137] Ratings Active learning

stead, based on the known ratings in the target domain, it builds a bridge that links the

two domains and transfers the user rating pattern from the movie domain to the book

domain. The experimental results demonstrate that, compared to the baselines, CBT

can address the data sparsity problem by transferring useful knowledge (the rating pat-

terns) and thus improve recommendation performance. In [29], Gao et al. posited a

transfer learning-based framework that transfers rating patterns across domains. This

work pools the known ratings from different domains together and shares the latent

rating pattern across domains. Based on the posited cluster level-based latent factor

model, the approach not only shares the rating pattern across domains, but it also learns

the domain-specific rating patterns of users in each domain for improving recommen-

dation accuracy. In [37], He et al. also proposed a novel CDR approach for transferring

rating patterns across domains, while Yuan et al. proposed a deep domain adaptation

model (called DARec) for transferring rating patterns across domains [128]. Yuan et

al. extracted the rating patterns from rating matrices, with the rating patterns being

independent of the auxiliary information from the source domain.

2.2.3 Multi-Domain Recommendation

MDR is another highly relevant direction to CDR, but it achieves a different goal:

it makes recommendations for all domains. Some of these multi-domain approaches

can be applied in CDR scenarios, but they either tend to make recommendations for
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specific or common users who are selected from domains, or only for the users in the

target domain. For a clear comparison, these MDR approaches are detailed in Table

2.8. This section also introduces relevant MDR approaches below.

In [135], Zhang et al. posited a multi-domain collaborative filtering (MCF) frame-

work for solving the data sparsity problem in multiple domains. The authors used

PMF to generate the latent factors that were learned from different domains, as well

as to adaptively transfer useful latent factors across domains. They also used a link

function to correct the domains’ biases.

Moreno et al. suggested a multi-domain framework that leveraged the auxiliary

information from multiple domains to help a sparse target domain [80]. This approach

does not require user overlap (common users) to link the auxiliary multiple domain-

s with the target domain. It integrates useful knowledge from different domains to

improve the recommendation accuracy in the target domain.

Based on transfer learning, Pan et al. proposed a multi-domain framework called

transfer by collective factorisation (TCF) — which considers heterogeneous user feed-

back — to predict unknown ratings in [83, 85]. In these studies, Pan et al. found that

the RSs may lack richer data in numerical ratings because users often provide binary

ratings (e.g., like and dislike). The authors focused on transferring the binary ratings

to a target numerical rating matrix, and thus their TCF can capture the data-dependent

effect and improve the quality of knowledge transfer.

Recently, in [137], Zhang et al. proposed an active learning strategy that address-

es the data sparsity problem in multi-domain scenarios. The authors considered both

domain-specific and domain-independent knowledge. Then, to measure the gener-

alisation error of domain-specific and domain-independent knowledge, they used an

expected entropy and a variance-based strategy, respectively. Finally, the proposed

approach applied an active learning strategy that combined the two measurements and

shared this global knowledge across domains.
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2.2.4 Single-Target CDR: A Summary

As discussed above, the single-domain recommendation approaches are constrained

by limited data, and existing single-target CDR approaches aim to address the data

sparsity problem on a single domain. Compared to SDR approaches, single-target

CDR approaches can leverage richer information from the source domain to improve

the recommendation accuracy in the target domain. The existing single-target CDR

approaches tend to use two main strategies: leveraging content information to link

two domains and then share the useful information across domains (content-based

transfer), or leveraging some latent factor models or neural networks to generate the

latent factors of users in each domain and then share these latent factors across domains

(feature-based transfer).

Content-based transfer approaches tend to leverage multi-source or multi-view

content information as a bridge for linking two domains (e.g., user/item attributes,

social tags, semantic properties, thumbs-up, metadata and browsing or watching histo-

ry). To extract useful content information, these approaches can employ topic models

that generate latent topics of users/items, or semantic analysis models that generate se-

mantic features of users/items. Based on the content similarities, these approaches can

discover similar users/items and then transfer useful user preferences or item details

across domains.

Feature-based transfer approaches also tend to employ machine learning tech-

niques to achieve single-target CDR, such as MTL, transfer learning, clustering, re-

inforcement learning, deep neural networks, relational learning and semi-supervised

learning. These approaches first generate latent factors or rating patterns in each do-

main and then directly transfer or map these useful features across domains.

In addition to these single-target CDR approaches, MDR approaches tend to achieve

a different but relevant goal: making recommendations by leveraging the auxiliary in-

formation from multiple domains to help a target domain. These MDR approaches

tend to employ transfer learning, active learning or feature combination to share useful
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information among different domains.

Although CDR has been studied from several angles, it is still a challenging and

under-explored topic in RSs [92]. Most CDR approaches are single-target approaches,

which means that they cannot leverage any information in the target domain to assist

the source domain. The researchers observed that the target domain may be richer in

certain types of data even if it may be very sparse in many types of data. This signifies

that the information in the target domain could be used to improve the source domain

if this information is used effectively. In fact, this is the basic motivation for proposing

new dual-target CDR approaches in the following chapters.

2.3 Dual-Target Cross-Domain Recommendation

Dual-target CDR is still a novel concept for improving the recommendation accuracies

in both domains simultaneously. Therefore, existing solutions are limited. The exist-

ing dual-target CDR approaches mainly focus on applying fixed or flexible combina-

tion strategies [141, 143], or they focus on simply changing the existing single-target

transfer learning to become dual-transfer learning [63].

In [141], Zhu et al. first proposed the DTCDR, a dual-target CDR framework that

uses multi-source information such as ratings, reviews, user profiles, item details and

tags to generate more representative embeddings of users and items. Then, based on

MTL, the DTCDR framework uses three different combination strategies to combine

and share the embedding of common users across domains.

Additionally, in [63], Li et al. posited the DDTCDR, a deep dual-transfer frame-

work for dual-target CDR. The DDTCDR framework considers the bidirectional latent

relations between users and items and applies a latent orthogonal mapping to extrac-

t user preferences. Based on the orthogonal mapping, DDTCDR can transfer users’

embeddings in a bidirectional way (i.e., Source→ Target and Target→ Source).

Recently, Zhu et al. proposed another dual-target CDR framework in [143] —

the GA-DTCDR. The authors first constructed separate heterogeneous graphs for each
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domain to generate more representative embeddings of users and items. They then

proposed an element-wise attention mechanism to effectively combine the embeddings

from both domains. Using this method, they could then improve the recommendation

accuracy in both domains.

2.3.1 Dual-Target CDR: A Summary

Dual-target CDR is still a new direction in the field of CDR, one that aims to improve

the recommendation accuracy in both domains simultaneously. To achieve dual-target

CDR, it is necessary to effectively utilise data richness and diversity in different do-

mains. Existing dual-target CDR approaches either attempt to combine and share the

embedding of common users or items across domains, or they extend the classical

single-target CDR approaches to be applied in dual-target CDR scenarios.

2.4 Multi-Task Learning

In Chapter 4, the researchers proposed a dual-target CDR approach that is based on

MTL. Therefore, this section will review the most relevant works in the area of MTL.

According to the correlations with RSs, these MTL approaches are classified into two

main categories — MTL approaches and MTL-based recommendation approaches.

- MTL approaches. MTL approaches can be broadly summarised by five cat-

egories, according to [136] — feature learning, low rank, task clustering, task

relation learning and decomposition. Feature-learning approaches [13, 113, 134]

can improve the performance of all tasks by sharing a common feature represen-

tation that is learned from the data in all tasks. Low rank approaches [129, 2, 34]

assume that the parameters of different tasks share a low-rank subspace that can

render the parameters of all tasks more accurate. Task-clustering approaches

[112, 124, 64] first cluster similar tasks and then share their parameters. The

fourth category is based on relational knowledge transfer [75, 76] and the last
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category decomposes the parameter matrix into two or more component matri-

ces [44, 15, 32], which can eliminate unimportant features and share important

features for all tasks.

- MTL-based recommendation approaches. The approach proposed in [3] com-

bines correlated context information from multiple tasks to improve predictive

accuracy in RSs. Additionally, the multi-task recommendation model proposed

in [69] focuses on combining MF for rating prediction and adversarial sequence

learning for recommendation explanation.

For a clear comparison, these MTL approaches are detailed in Table 2.9.

2.4.1 MTL Approaches

MTL approaches can be broadly summarised by five categories, according to [136]:

feature learning, low rank, task clustering, task relation learning and decomposition.

This thesis will only review some of the most relevant works.

2.4.1.1 Feature Learning

First, Rich Caruana proposed an MTL framework in [13] based on k-nearest neigh-

bour, kernel regression and decision trees. In this study, Caruana explained the mech-

anism of MTL and applied the study’s approach in some real domains.

Then, in [113], Titsias et al. suggested a variational Bayesian inference approach

for multiple sparse linear models. Based on the spike and slab prior knowledge, the

suggested approach can combine the task-specific weights from different tasks and

then share such combined weights across tasks according to the relations between two

tasks.

Zhang et al. recently proposed a framework for biological image analysis based on

transfer learning and MTL in [134]. The authors employed deep convolutional neural

networks to act on image pixels directly. In the experiments, they leveraged labelled
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Table 2.9: The comparison of existing MTL approaches

Category Representative
approaches

Technology adoption
or basic idea

Feature Learning

Caruana et al. [13]
K-nearest neighbor
& kernel regression

& decision trees
Titsias et al. [113] Variational Bayesian inference

Zhang et al. [134]
Transfer learning

& multi-task learning

Low-Rank

Zhang et al. [129] Independent component
Agarwal et al. [2] Manifold regularisation

RAMUSA –
Han et al. [34]

Capped trace norm regulariser

Task Clustering

TC –
Thrun et al. [112]

TC clustering

MSBP –
Xue et al. [124]

Matrix stick-breaking

GP –
Lian et al. [64]

Sparse construction
& Variational Bayes inference

Task Relation Learning
Mihalkova et al. [75]

Transfer learning
& markov logic networks

SR2LR –
Mihalkova et al. [76]

Transfer learning

Decomposition

Jalali et al. [44]
Transfer learning

& parameter overlap

Chen et al. [15]
Cardinality regularisation term

& low-rank constraint
rMTFL –

Gong et al. [32]
Accelerated gradient descent

natural images to train the proposed model and extract the generic features. Then, they

transferred useful features from the source domain to the target domain.

2.4.1.2 Low-Rank

Based on an independent component strategy, Zhang et al. proposed a probabilistic

approach for MTL in [129]. First, the authors considered the relatedness between

different tasks to generate the task parameters in each task. Then, to identify the

hidden and independent components, they employed Laplace distributions to model
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the hidden sources. This proposed approach is also compatible with empirical Bayes

methods and point estimation.

Then, Agarwal et al. proposed an MTL framework based on manifold regularisa-

tion in [2]. This approach assumed that the parameters of all related learning tasks lie

on a common manifold. In the training process, the proposed approach learned the

task parameters and the corresponding manifold alternately. Based on conventional

single-task learning strategies, such as SVMs, the proposed approach learns all task

parameters and uses them to learn the corresponding manifold.

Additionally, in [34], Han et al. discovered that a global penalisation on the sin-

gular values of the weight matrix may lead to a serious problem — an estimation loss

when the proposed approach wants to recover the larger singular values. To address

this problem, the authors proposed a Reduced rAnk MUlti-Stage multi-tAsk learning

(RAMUSA) approach. Specifically, RAMUSA employs a capped trace norm regu-

lariser to minimise the singular values of the weight matrix only if the singular values

are smaller than a certain threshold. In this way, the estimation loss at each stage in

RAMUSA shrinks and finally achieves a lower upper-bound.

2.4.1.3 Task Clustering

Thrun et al. [112] posited a task-clustering (TC) approach for MTL. First, TC groups

different learning tasks into different classes. Then, for a new learning task, TC can

provide useful information from the most relevant task cluster. Finally, such useful

information can improve the new learning task.

Further, Xue et al. proposed an MTL framework that was based on the matrix

stick-breaking process (MSBP) [124]. The process involves clustering information

from different tasks into different feature components. For each task, MSBP tends to

share the most related feature component from other tasks to this respective task.

Additionally, Lian et al. posited a multi-task point process model by using a hi-

erarchical Gaussian process (GP) [64]. Specifically, the GP can map historical events

to future ratings. Lian et al. also applied a sparse construction in their model and
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designed a variational Bayes strategy for model learning and inference.

2.4.1.4 Task Relation Learning

Based on transfer learning with Markov logic networks, Mihalkova et al. proposed a

framework for transferring the predications from a source domain to a target domain

[75]. These transferred predictions can ultimately improve the accuracy in the target

domain.

Further to this, in [76], Mihalkova et al. introduced a single entity-centred setting

that is an important framework for transferring useful information across domains.

In the target domain, this framework only provides information concerning a single

entity. Mihalkova et al. posited an SR2LR algorithm that could map the information

from the source domain to the target domain.

2.4.1.5 Decomposition

In [44], Jalali et al. proposed an MTL framework for multiple linear regression tasks.

The authors leveraged parameter overlapping to transfer useful parameters across tasks.

For two related tasks, their proposed dirty model estimated overlap of two sets of pa-

rameters and trained them differently.

Further to this, Chen et al. proposed an MTL framework to share the sparse and

low-rank patterns rather than the parameters across different related tasks [15]. Based

on a linear MTL formulation, the sparse and low-rank patterns were learned by a

cardinality regularisation term and a low-rank constraint, respectively. Chen et al. fur-

ther proposed two projected gradient algorithms to solve the optimisation formulation

problems. Apart from these points, the authors also applied presented projected gradi-

ent algorithms for MTL formulation.

Additionally, Gong et al. proposed a robust multi-task feature learning (rMTFL)

approach that could share a set of common features across tasks [32]. This proposed

rMTFL approach can identify outlier tasks (sparsity patterns) by using a group lasso
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penalty on the column groups of the second component of the weight matrix. The

authors employed an accelerated gradient descent for the optimisation of the proposed

rMTFL. Their experiments indicated that the proposed rMTFL can capture and share

the shared features across tasks, and that it can identify outlier tasks.

2.4.2 MTL-Based Recommendation Approaches

In [3], Agarwal et al. proposed an approach that combined the multiple context infor-

mation from different tasks to improve the predictive accuracy in RSs. To reduce the

bias in estimates, the authors leveraged the positing of local information and context-

specific factors of entities. Additionally, to avoid the over-fitting problem caused by

data sparsity, the local factors were connected to a shared global structure. Based on

the concept of the EM framework, Agarwal et al. eventually trained their proposed

model.

Further to this, in [69], Lu et al. proposed a multi-task approach for combining MF

for rating prediction and adversarial sequence learning for recommendation explana-

tion.

2.4.3 Multi-Task Learning: A Summary

Existing MTL approaches are classified into five groups: feature learning, low rank,

task clustering, task relation learning and decomposition. Most approaches focus on

sharing features across tasks, which is an effective method for addressing the data

sparsity problem.

In particular, the feature-learning approaches tend to apply classical machine learn-

ing techniques — such as k-nearest neighbour, kernel regression, decision trees, vari-

ational Bayesian inference, transfer learning and MTL — to generate features or share

these features across multiple tasks. The low-rank approaches tend to apply some reg-

ularisers (e.g., the manifold regulariser and capped trace norm regulariser) to share a

low-rank subspace for different tasks. The TC approaches tend to make clustering s-
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trategies, such as TC clustering, to group similar tasks and then share their parameters.

The task relation-learning approaches tend to apply transfer learning to the process

of transferring useful relations across tasks. The last category involves decomposing

the parameter matrix into two or more component matrices by using decomposition

techniques.

Although MTL has been applied for RSs, efficiently applying the existing MTL

approaches for dual-target CDR is difficult because they heavily rely on side informa-

tion (i.e., additional information that is associated with the users and items) from a

single domain. However, a sparser domain in dual-target CDR may be too sparse to

support it.

2.5 Graph Embedding

As Chapter 5 has proposed the novel GA-DTCDR framework for consideration, this

section will introduce the most relevant works to the area of graph embedding.

Graph embedding involves learning a mapping function in which the nodes in a

graph are mapped to low-dimensional latent representations [140]. These latent repre-

sentations can be used as the features of nodes for different tasks, such as classification

and link prediction. According to embedding techniques, this section classifies the

existing graph-embedding approaches into two categories: dimensionality reduction

and neural networks. Dimensionality reduction-based approaches — such as mul-

tidimensional scaling [54], principal component analysis [121] and their extensions

[125] — involve optimising a linear or non-linear function that reduces the dimension

of a graph’s representative data matrix and then produces low-dimensional embed-

dings. Neural network-based approaches — such as DeepWalk [86], LINE [109] and

Node2vec [33] — involve treating nodes as words and the generated random walks

on graphs as sentences, and then learning node embeddings based on these words and

sentences [140].

For a clear comparison, these graph embedding approaches are listed in detail in



§2.5 Graph Embedding 44

Table 2.10: The comparison of existing graph embedding approaches

Category Approaches Technology adoption
or basic idea

Dimensionality
reduction-based

MDS –
Kruskal et al. [54]

Dimensionality reduction

PCA –
Wold et al. [121]

Dimensionality reduction

MFA –
Yan et al. [125]

Linear & non-linear
mappings

Shi et al. [100] Feature combination

Neural network
-based

DeepWalk –
Perozzi et al. [86]

Random walks

LINE –
Tang et al. [109]

Local and global structures &
edge-sampling strategy

Node2vec –
Grover et al. [33]

Neighbourhood-based

Cao et al. [12] Random surfing strategy
SDNE –

Wang et al. [117]
Semi-supervised deep learning

Kipf et al. [51] Variational auto-encoder

Pan et al. [81]
Topological structure

& node content
Tu et al. [114] Regular equivalence

NetRA –
Yu et al. [127]

Locality-preserving
& global reconstruction constraints

Table 2.10.

2.5.1 Dimensionality Reduction-Based Approaches

To uncover the hidden structure of databases, Kruskal et al. proposed a spatial repre-

sentation approach — multidimensional scaling (MDS) — for a dataset in [54]. MDS

is a conventional approach that maps a data graph to a representative matrix. The gen-

eral concept of this approach is to optimise a linear function to reduce the dimension

of the representative matrix.

In [121], Wold et al. posited a basic method called principal component analysis
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(PCA) for analysing the multivariate data, and it can capture essential data patterns.

The basic concept of this method involves achieving an approximation of a data table

or data matrix. PCA can be used to generate the low-dimensional latent representations

of a data matrix (i.e., graph embedding).

In addition to the above two conventional approaches, there are also many dimen-

sionality reduction-based approaches that focus on other aspects, such as marginal

fisher analysis (MFA) [125] and graph joint graph embedding and sparse regression

[100]. In [125], Yan et al. proposed a general framework for graph embedding that

contains a linear function and a non-linear kernel for mapping a data graph to low-

dimensional embeddings. In [100], Shi et al. proposed a unified framework for all

supervised, semi-supervised and unsupervised learning tasks. In this approach, Shi et

al. tended to combine the objective functions of graph embedding and sparse regres-

sion, which can make graph embedding and sparse regression implement and optimise

simultaneously.

2.5.2 Neural Network-Based Approaches

In [86], Perozzi et al. proposed the well-known graph-embedding approach, Deep-

Walk, which learns the latent representations of nodes in a graph. In DeepWalk, social

relations are encoded in the latent representations. DeepWalk is applied in language-

modelling tasks and deep-learning tasks in [86], which achieves an effective perfor-

mance. Specifically, DeepWalk can learn the latent representations by treating random

walks as the equivalent of sentences. Additionally, based on online learning, Deep-

Walk can also be considered a scalable approach.

Tang et al. focused on embedding large information graphs into low-dimensional

vector spaces in [109], and they proposed an effective embedding approach — LINE

— for many learning tasks (e.g., node classification and link prediction). LINE is

suitable for different types of information graphs, such as undirected graphs, directed

graphs and weighted graphs. Specifically, regarding their objective function, they con-
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sider both local and global network structures. Additionally, to address the problems

caused by the classical stochastic gradient, they also take an edge-sampling strategy.

Grover et al. suggested a graph-embedding framework — Node2vec — that could

generate continuous feature representations for nodes in a graph [33]. In this study, the

authors believed that exploring the neighbourhoods of nodes in a graph is the key to

learning richer representations. Based on this belief, they mapped the nodes in a graph

to low-dimensional vector spaces.

Further to this, there have recently been many graph-embedding approaches that

are based on DNNs [12, 117, 51, 81, 114, 127]. Unlike traditional graph-embedding s-

trategies, Cao et al. [12] employed a random surfing strategy to directly capture graph

structural information, rather than using some sampling-based strategies to generate

linear sequences. After this, Wang et al. [117] proposed a structural deep network

embedding approach (SDNE) to capture a complex and non-linear network structure.

SDNE employs a semi-supervised deep model for non-linear network structure and

jointly optimises first-order and second-order proximity for preserving both local and

global network structures. Based on a variational auto-encoder, Kipf et al. proposed

a graph-embedding approach for undirected graphs [51]. Additionally, Pan et al. pro-

posed an adversarial graph-embedding framework in [81]. In this study, Pan et al.

considered both topological structure and node content when they encoded the nodes

in a graph. Tu et al. proposed a deep recursive network embedding (DRNE) approach

in [114]. Using the DRNE approach, Tu et al. considered regular equivalence (i.e.,

that many nodes in different parts of a graph may have similar roles) when they want-

ed to map the nodes in the graph to low-dimensional vectors. Finally, to address the

sparsity problem in graph embedding, Yu et al. aimed to learn the network representa-

tions with adversarially regularised auto-encoders (NetRA) in [127]. NetRA considers

both locality-preserving and global reconstruction constraints to capture the graph’s

structure.
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2.5.3 Graph Embedding: A Summary

Classical graph-embedding approaches tend to use dimensionality reduction-based s-

trategies to embed the nodes in a graph, while recent neural network-based approaches

tend to employ DNNs to learning a non-linear representation of nodes. Existing dimen-

sionality reduction-based approaches focus on reducing the dimensionality of repre-

sentation, on learning linear/non-linear mappings or on combining features. Existing

neural network-based approaches tend to consider the structure of a graph and then

employ machine learning strategies or techniques (e.g., random walks, edge-sampling

strategies, neighbourhood-based algorithms and semi-supervised learning) to learn the

embeddings of nodes.

Graph embedding is a key tool for many learning tasks, such as visualisation, node

classification and link prediction, which can provide the latent representation of nodes

in a graph in the form of vectors. In RSs, the different types of relations — such as

user-user, item-item and user-item relations — can be included as a relation graph. The

graph-embedding technique can thus play an important role in RSs. In fact, Chapter 5

outlines how this technique will be employed as an important tool for generating the

rating embeddings of users and items.

2.6 Attention Mechanism

As Chapter 5 proposed the GA-DTCDR framework, this section will briefly introduce

the most relevant approaches to the attention mechanism.

Attention is first introduced in [5], which involves providing a more accurate align-

ment for each position in a machine translation task. Apart from machine translation,

the attention mechanism has also recently been used in image captioning [126, 17] and

recommendation [16]. The general concept of the attention mechanism is to focus on

selective parts of the whole information, which can capture the outstanding features of

objects. For recommendation, the existing attention approaches [16, 39, 111, 118] tend
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Table 2.11: The comparison of existing attention-based approaches

Application field Approaches Technology adoption
or basic idea

Machine translation Bahdanau et al. [5] Encoder-decoder

Image captioning
You et al. [126] Semantic concept proposals

SCA-CNN –
Chen et al. [17]

Attentive spatial locations
& attentive channels

Recommendation

ACF –
Chen et al. [16]

item-level and
component-level attentions

Hu et al. [39] Meta-path based context
MPCN –

Tay et al. [111]
Importance of reviews

KGAT –
Wang et al. [118]

Neighbors-based
embedding propagation

to select information parts of explicit or implicit data to improve the representations

for users and items.

In [5], Bahdanau et al. first proposed an attention framework for English-to-French

translation. They extended the traditional encoder-decoder methods and automatically

linked a source sentence part to a target word. Especially in the decoder process,

Bahdanau et al. implemented an attention mechanism to pay attention to parts of the

source sentence.

The attention mechanism is also widely used in image captioning [126, 17]. For

example, in [126], You et al. proposed a semantic attention framework that combines

the conventional top-down and bottom-up approaches in the field of image caption-

ing. This approach can selectively pay attention to semantic concept proposals and

map these proposals onto latent spaces. Using convolutional neural networks as a

basis, Chen et al. [17] proposed a spatial and channel-wise attention mechanism —

SCA-CNN — for image captioning. Specifically, SCA-CNN can dynamically gen-

erate sentences and encode attentive spatial locations at multiple layers and attentive

channels.

Recently, the attention mechanism is also applied in RSs. This thesis will only in-
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troduce a part of these approaches so that their research directions and basic concepts

can be briefly understood. To achieve multimedia recommendation, Chen et al. [16]

proposed a novel attention mechanism in CF — ACF — to leverage item-level and

component-level historical feedback. In [39], and using a co-attention mechanism as a

basis, Hu et al. proposed a DNN for top-N recommendations. In this approach, the co-

attention mechanism can improve the representations of users and items by leveraging

meta-path-based contexts. Tay et al. believed that the importance of different reviews

varies to some extent [111]. The authors thus proposed a multi-pointer co-attention

network (MPCN) that can extract important reviews from users and items. Addition-

ally, in [118], Wang et al. proposed a knowledge graph attention network (KGAT) for

making recommendations, which considers the utility of knowledge graphs and links

items with their attributes. The basic concept of KGAT is to propagate the embeddings

from a node’s neighbours in a graph to the embedding of the target node. During the

propagation process, the attention mechanism is used to measure the importance of the

neighbours.

2.6.1 The Attention Mechanism: A Summary

The attention mechanism has been widely used in many application fields, such as

in machine translation, image captioning and recommendation. Its general concept

involves paying more attention to the important parts of the target data and offering

them higher weights in the neural networks. In the field of machine translation, ex-

isting attention approaches directly apply encoder-decoder techniques to translate one

language to another. In the field of image captioning, with the help of the attention

mechanism and other techniques (e.g., semantic analysis), existing approaches can

provide accurate captions to images. Additionally, in the field of recommendation, the

attention mechanism can help RSs offer high weights to important information (e.g.,

reviews, item details and metadata).

Since the attention mechanism can automatically provide the weights to the em-
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beddings of users and items from different data sources, it can thus be employed to

improve the quality of embedding combinations in dual-target CDR. This is why it

was chosen as the combination technique in Chapter 5.

2.7 Summary

In this chapter, the researchers reviewed the related works pertaining to SDR, single-

target CDR and dual-target CDR.

In regard to existing SDR approaches, their main categories, characteristics, ad-

vantage and disadvantage, can be summarised as follows:

- Categories and characteristics.

X Rating-based approaches. These approaches tend to leverage observed

ratings to predict unknown ratings. The training process involves minimis-

ing the rating loss or rating ranking loss. However, the rating matrices in

these RSs are sparse.

X Content-based approaches. These approaches tend to leverage observed

ratings and content information to predict unknown ratings. However, the

content information is still limited to a single domain.

- Advantage. These SDR approaches can partly address the data sparsity prob-

lem in a single domain by taking some effective strategies, e.g., collaborative

filtering, and leveraging multi-source information, e.g., ratings and contents.

- Disadvantage. These SDR approaches are constrained by limited data from

a single domain, which signifies that using these approaches to solve the data

sparsity problem will be difficult.

In regard to existing single-target CDR approaches, their main categories, charac-

teristics, advantage and disadvantage, can be summarised as follows:
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- Categories and characteristics.

X Content-based transfer. These approaches first leverage content informa-

tion as a bridge that links different domains, and then they transfer user

preferences or item details across domains. However, the rating matrices

in these RSs are sparse.

X Feature-based transfer. These approaches first generate latent factors of

users/items or rating patterns in each domain, and then they transfer these

features across domains.

- Advantage. These CDR approaches can leverage the auxiliary information from

the source domain to improve the recommendation performance in the target

domain.

- Disadvantage. These CDR approaches are single-target approaches, which

means that they cannot leverage any information in the target domain to help

the source domain.

In regard to existing dual-target CDR approaches, they mainly focus on applying

fixed combination strategies or on extending the classical single-target CDR approach-

es so they can be applied in dual-target CDR scenarios. Dual-target CDR is still a

novel direction, but it is a promising direction that could be used to further improve

the recommendation performance of existing single-target CDR approaches.

Additionally, in Chapter 4, MTL was used as a basis for proposing a dual-target

CDR approach. The chapter thus also briefly introduced the most relevant approaches

pertaining to MTL. For existing MTL approaches, their main categories, characteris-

tics, advantage and challenge, can be summarised as follows:

- Categories and characteristics.

X MTL approaches. These approaches generally use five different strategies

to share useful data or features across tasks: feature learning, low rank, task

clustering, task relation learning and decomposition.
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X For recommendation tasks. These approaches tend to combine multi-

source information or features from different tasks to improve the predic-

tive accuracy in RSs.

- Advantage. These MTL approaches can share a part of parameters or knowl-

edge learned from different tasks to improve the performance in a target task.

- Challenge. Efficiently applying these MTL approaches for dual-target CDR is

difficult because they heavily rely on side information or on other additional

information.

Similarly, Chapter 5 used the graph-embedding technique and attention mechanism

as a basis for proposing the GA-DTCDR. The most relevant approaches pertaining to

these two fields were thus briefly reviewed in the last part of this chapter.

In regard to existing graph-embedding approaches, their main categories, charac-

teristics, advantage and challenge, can be summarised as follows:

- Categories and characteristics.

X Dimensionality reduction-based approaches. These approaches use dimensionality-

reduction strategies for learning linear/non-linear mappings or for combin-

ing features.

X Neural network-based approaches. These approaches consider a graph’s

structure and employ different machine learning techniques for learning

the embeddings of nodes.

- Advantage. For RSs, these graph-embedding approaches has the potential to

generate more representative embeddings of users and items.

- Challenge. It is still a challenge for these graph-embedding approaches to con-

struct an informative graph.

In regard to existing attention mechanism approaches, their main categories, char-

acteristics, advantage and challenge, can be summarised as follows:
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- Categories and characteristics.

X Machine translation approaches. These approaches tend to apply encoder-

decoder techniques to translate one language to another.

X Image captioning approaches. These approaches tend to consider addi-

tional information, such as semantic information, to provide accurate cap-

tions for images.

X Recommendation approaches. These approaches tend to attribute high

weights to important information, such as reviews, item details and meta-

data.

- Advantage. To target dual-target CDR problem, these attention mechanism ap-

proaches can automatically give appropriate weights to the embeddings of com-

mon users or common items from both domains.

- Challenge. It is still a challenge for these attention mechanism approaches to

design an appropriate activation function and a reasonable loss function for at-

tention networks.



Chapter 3

A Deep framework for Cross-Domain

and Cross-System Recommendations

To address the data sparsity problem in RSs, a new trend has emerged in recent years

that utilises relatively richer information (e.g., ratings) from the source domain or sys-

tem to improve the recommendation accuracy in the target domain or system. This

new trend can be classified as CDR [8] and CSR [138].

Existing transfer-based approaches in CDR and CSR either directly replace a part

of the latent factors of users/items from the source domain with the corresponding la-

tent factors in the target domain [139] (Category 1), or they map the latent factors of

common users/items in the source domain to fit those factors in the target domain [71]

(Category 2). However, the approaches in Category 1 ignore the complex relationship

between the latent factors in the two domains, while the approaches in Category 2 only

focus on the common users and items so that their relatively accurate latent factors in

the source domain or system can be adjusted to fit the worser ones in the target domain,

which is neither reasonable nor effective. Therefore, to further improve recommenda-

tion accuracy, it is crucial to find an effective method for accurately mapping latent

factors across domains or systems. This has introduced in Section 1.2.1 and expressed

by CH1: ‘How can an accurate mapping of the latent factors across domains be found

for enhancing recommendation accuracy?’.

In contrast to existing CDR and CSR approaches, this chapter will propose a nov-

el approach to generating benchmark factors that combines the features of the latent

54



§3.1 Notations and Problem Definition 55

factors in both the source and target domains. The latent factors in the target domain

or system are then mapped to fit the benchmark factors. To the best of the researcher-

s’ knowledge, this leads to a new category of transfer-based approaches for mapping

latent factors across domains or systems, and this thesis’s approach is the first one in

this novel category.

This section will first formulate the CDR and CSR problems. The DCDCSR will

then be proposed and the DNN mapping process for mapping latent factors across

domains or systems will be introduced. This section will also describe how cross-

domain and cross-system recommendations are made based on predicted ratings. The

detailed framework is explained in the following sections.

3.1 Notations and Problem Definition

Let Rs and Rt denote the rating matrices of the source and target domains or systems,

respectively. Let U = {u1, ..., un} and V = {v1, ..., vm} denote the user and item sets,

respectively, where n is the number of users and m is the number of items. rtij ∈ Rt

denotes the rating that ui gives to an item vj in the target domain or system. Given a

rating matrix of R, after MF, R is factorized into two latent matrices U (K × n) and

V (K × m), where K is the dimension of factors. U and V represent the low-rank

factor matrices for U and V , respectively. Concretely, U t
i denotes ui’s latent factor

vector in the target domain or system. Based on these notations, the CDR problem can

be defined as below.

Definition 1. CDR problem:

- Input: Two observed domains including the rating matrices Rs and Rt, the user

sets U s,U t ⊆ U , and the item sets Vs,V t ⊆ V .

- Output: Recommend the items Vi ⊆ V t to a target user ui ∈ U t by utilising

both Rs and Rt.
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Similarly, the CSR problem can also be formulated by replacing ‘domain’ with

‘system’ in Definition 1.

3.2 The DCDCSR Framework

To target the above problems for both CDR and CSR, a deep framework called the

DCDCSR was proposed. This framework can be divided into three phases: Phase 1:

MF modelling, Phase 2: DNN mapping and Phase 3: Cross-domain and cross-system

recommendations. The framework structure is illustrated in Figure 3.1.

In Phase 1, the user and item latent factor matrices {U s,U t,V s,V t} are obtained

by using MF. In Phase 2, the benchmark factor matrices {U b,V b} are first generated

by combining the latent factor matrices {U s,U t,V s,V t} according to the sparsity

degrees of individual users and items. Then, the deep neural network in the Feedfor-

ward and the Backpropagation processes is trained to map the latent factor matrices

{U t,V t} to fit the benchmark factor matrices {U b,V b}. In Phase 3, based on the

affine factor matrices {Û t, V̂ t} that were learned from Phase 2, the users’ ratings on

all items in the target domain or system are predicted, and matched items are recom-

mended to target users. The three phases in the framework are presented in Algorithm

1, with details explained in the following sections.

3.3 Phase 1: MF Modeling

To study the generalisability of the proposed DCDCSR framework in Phase 1, two

classical rating-oriented MF models are applied (MMMF [104] and PMF [78]), as

well as a representative ranking-oriented MF model (BPR [91]) to generate user and

item latent factors for the following mapping process. While the rating-oriented M-

F models focus on minimising the error between observed and predicted ratings, the

ranking-oriented MF model emphasises the personalised rating rankings on items re-

maining unchanged between observed and predicted ratings — both of which can carry
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Figure 3.1: The structure of our DCDCSR Framework

different biased latent factors to the following DNN mapping process. The details of

the MF models are described in the following subsections.

3.3.1 Rating-Oriented Matrix Factorisation

3.3.1.1 Maximum-Margin Matrix Factorisation

MMMF involves learning a matrix R̂ to fit the observed rating matrix R by minimis-

ing a trace norm of R and by maximising the corresponding predictive margin. The
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Algorithm 1 The DCDCSR Framework
Require: The rating matrices, user sets, and item sets of the source and target domains

or systems Rs, Rt, U s, U t, Vs and V t.
Ensure: Recommend items Vi ⊆ V t to a target user ui in the target domain or

system.
Phase 1: MF Modelling

1: Learn {U s,V s} from Rs by using MF;
2: Learn {U t,V t} from Rt by using MF.

Phase 2: DNN Mapping
3: Generate the benchmark factor matrix U b for CDR or V b for CSR.
4: Normalise {U t,U b} for CDR or {V t,V b} for CSR.
5: Train the parameters of the deep neural network by the Feedforward and

Backpropagation processes.
6: Obtain the affine factor matrices Û t or V̂ t.
7: Denormalise Û t or V̂ t.

Phase 3: Cross-Domain and Cross-System Recommendations
8: For CDR, fix Û t and train V̂ t from Rt by using the MF model in Phase 1.
9: For CSR, fix V̂ t and train Û t from Rt by using the MF model in Phase 1.

10: Obtain the predicted ratings R̂t = Û t[V̂ t]> for the target domain or system.
11: return Vi.

objective function is represented as follows:

min
U,V,Θ

( ∑
ui∈U ,vj∈V

`(Ui, Vj) + λ(‖U‖2
F ) + ‖V ‖2

F )

)
, (3.1)

where `(Ui, Vj) =
p−1∑
h=1

max(0, 1 − (Ihij(θij − U>i Vj))). Ihij = +1 for Rh ≥ Rij .

Here,Rh represents the h-th rating, otherwise Ihij = −1. ‖·‖F represents the Frobenius

norm and the user-specific threshold θij is indicated in [104]. The parameters are

trained by optimising the objective function via gradient descent.

3.3.1.2 Probabilistic Matrix Factorisation

This is a probabilistic model with Gaussian observation noise, and the core concept

of PMF is maximising the conditional distribution over the observed ratings. The

objective function of PMF model is:
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min
U,V

( n∑
i=1

m∑
j=1

‖Iij · (Rij − U>i Vj)‖2
F

+λU‖U‖2
F + λV ‖V ‖2

F

)
,

(3.2)

where λU = σ2/σ2
U , λV = σ2/σ2

V , and Iij is the indicator variable. Iij = 1 represents

that user ui has rated on item vj; otherwise Iij = 0. The parameters can be trained by

minimising the objective function via gradient descent.

3.3.2 Ranking-Oriented Matrix Factorisation

3.3.2.1 Bayesian Personalised Ranking Model

The BPR is a generic optimisation benchmark that is used for personalised ranking

and it creates a set of triples Ds : U × V × V by:

Ds := {(ui, vj, vl)|Rij > Ril}. (3.3)

To reduce the ranking error between predicted and observed ratings, BPR optimises

the following objective function as so:

min
U,V

( ∑
(ui,vj ,vl)∈Ds

−lnσ(U>i Vj − U>i Vl)

+λU‖U‖2
F + λV ‖V ‖2

F

)
,

(3.4)

the parameters are also trained by gradient descent.

3.4 Phase 2: The DNN Mapping

The user and item latent factor matrices {U s,U t,V s,V t} can be learned by the

abovementioned MF models. Next, a fully connected DNN is developed to repre-
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sent the relationship of latent factors between two domains or systems (i.e., DNN

mapping).

As mentioned in Section 2, both enforcing {U t,V t} to be the same as {U s,V s}

[139] and mapping {U s,V s} to fit {U t,V t} [71] are neither effective nor reasonable

because the accuracies of user and item latent factors mainly depend on their sparsity

degrees. More importantly, a common entity in the source domain or system may

be sparser than the entity in the target domain or system. This means that the latent

factors of the entity in the source domain or system are less accurate than those of the

entity in the target domain or system. Therefore, more reasonable benchmark factor

matrices U b and V b are generated by integrating latent factors and by considering the

sparsity degrees of individual users and items in both the source and target domains or

systems.

3.4.1 The Generation of Benchmark Factors

First, the common users CU are extracted from two different domains for CDR and the

common items CV are extracted from two different systems for CSR.

Then, the sparsity degrees of common entities (either users or items) are defined in

the different domains or systems below.

Definition 2. Sparsity Degrees of Common Entities.

- For any common entity ei ∈ CU ∪ CV ,

- Given the total numbers of ratings of ei in the source and target domains or

systems, ns
i and nt

i,

- The sparsity degrees αs
i and αt

i of the entity ei in the source and target domains

or systems are calculated as

αs
i =

nt
i

(ns
i + nt

i)
, αt

i = 1− αs
i . (3.5)
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To generate more reasonable benchmark factors for the following DNN mapping

process, both {U s,V s} and {U t,V t} are non-negligible factors. Therefore, based on

the concept of feature combination that was introduced in [11], for each common user

ui ∈ CU , the benchmark factor vector CU b
i can be calculated as follows:

CU b
i = (1− αs

i ) ·U s
i + (1− αt

i) ·U t
i . (3.6)

According to Equation (3.6), the smaller that the sparsity degrees αs
i and αt

i are,

then the more accurate their corresponding latent factor vectors U s
i and U t

i will be

— and thus, the more these vectors are considered in generating a benchmark factor

vector CU b
i .

Likewise, for CSR, the benchmark factor matrix CV b can be obtained for the

common items.

Next, the different users DU t = U t − CU are identified in the target domain for

CDR, and the different items DV t = V t − CV are identified in the target system for

CSR. Later on, the cosine similarity is employed to measure the similarities between

common and different entities. For each user ui ∈ DU t, the top-k similar users SU i

from CU are chosen. Similarly, for each item vi ∈ DV t, the top-k similar items SV i

from CV are chosen. Based on these top-k similar entities, the sparsity degrees of

different entities are defined as follows:

Definition 3. Sparsity degrees of different entities

- For any different entity ei ∈ DU t ∪ DV t,

- Given the total number of ratings of ei in the target domain or system, ns
i , and

the average number of ratings of ei’s top-k similar entities in the source domain

or system, sns
i ,

- The sparsity degree βt
i of entity ei in the target domain or system is calculated

as

βt
i =

sns
i

(nt
i + sns

i )
. (3.7)



§3.4 Phase 2: The DNN Mapping 62

Therefore, for each different user ui ∈ DU t, the benchmark factor vector DU b
i

can be calculated as:

DU b
i = (1− βt

i) ·U t
i + βt

i · SUi,where

SUi =

∑
uj∈SU i

sim(ui, uj) ·U s
j∑

uj∈SU i

sim(ui, uj)
.

(3.8)

Similarly, for CSR, the benchmark factor matrix DV b can be obtained for different

items.

Finally, we have U b = CU b ∪DU b and V b = CV b ∪DV b.

3.4.2 The Mapping Process

3.4.3 Normalisation

The abovementioned feature combination method can be used to obtain the benchmark

factor matrices {U b,V b}. The latent factor matrices {U t,V t} and the benchmark fac-

tor matrices {U b,V b} are normalised into the range [−1, 1] by using the mapminmax

function.

3.4.4 Mapping Process

As shown in Phase 2 of Figure 3.1, a fully connected DNN is employed to map U t to

fit U b for CDR and V t to fit V b for CSR, respectively. Since the mapping processes

for CDR and CSR are similar, CDR is selected as the example for introducing the DNN

mapping process. In general, to minimise the mapping loss for CDR, the process of

training mapping parameters can be changed into the following minimisation problem:

min
Θ
`(h(U t; Θ),U b), (3.9)
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where h(·) is a DNN mapping function that is introduced below, and the loss function

`(·) is the square loss.

This detailed training process is divided into the two steps of Feedforward and

Backpropagation, as outlined below:

- Feedforward: Each latent factor vector is denoted as a low-dimensional vector,

and each input vector is mapped into a hidden vector in each layer. Let xj

denote the input vector, Wj denote the weight vector, bj denote the bias term

and yj denote the output vector for the j-th hidden layer, j = 1, ..., d. Therefore,

for U t
i ⊂ U t, we have

x1 = U t
i ,

yj = f(Wj · xj + bj), j = 1, ..., d− 1,

h(U t
i ; Θ) = f(Wd · xd + bd), Θ = {W ; b},

(3.10)

and the tan-sigmoid function is chosen as the activation function — that is,

f(x) = 2
(1+exp−2x)

− 1.

- Backpropagation: According to the chain rule, the parameters are recursively

updated by computing the gradients of all inputs, parameters and intermediates,

as introduced in [93].

The mapping process is similar for CSR, involving the replacement of {U t,U b} with

{V t,V b} as the input for the DNN.

3.4.5 Denormalisation

After the DNN mapping, the affine factor matrix Û t for CDR and V̂ t for CSR is

obtained. Finally, the affine factor matrix is denormalised into the range of the original

latent factor matrix by reversing the mapminmax function.
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3.5 Phase 3: Cross-Domain and Cross-System Recom-

mendations

3.5.1 Cross-Domain Recommendation

In most cases, the items in the source and target domains are definitely different.

Therefore, with the DNN mapping for CDR, the affine factor matrix Û t can be ob-

tained. However, the original V t has yet to be improved. To this end, we fix Û t and

only update V t by using the MF models to generate V̂ t.

3.5.2 Cross-System Recommendation

Similarly, either the users in the source and target systems are totally different, or it is

difficult to determine whether they are the same. Therefore, for CSR, we first obtain

V̂ t using the DNN mapping, then fix V̂ t and obtain Û t by using the MF models.

Finally, based on Û t and V̂ t, matched items Vi ⊆ V t can be recommended to

target users ui ∈ U t for both CDR and CSR.

3.6 Experiments on DCDCSR

Extensive experiments are conducted on three real-world datasets, which aim to an-

swer the following questions:

- Q1: How does the dimension K of the latent factors affect the efficiency of the

DCDCSR framework? (in Result 1)

- Q2: How does the DCDCSR approach outperform the state-of-the-art approach-

es for both cross-domain and cross-system recommendations? (in Results 2 &

3)



§3.6 Experiments on DCDCSR 65

Table 3.1: Experimental datasets for DCDCSR

Tasks Cross-Domain Cross-System
Datasets Douban Netflix MovieLens Douban*
Domains Movie Book Music Movie Movie Movie
#Users 3,982 3,032 1,983 59,688 138,493 500
#Items 90,553 87,848 88,986 17,434 27,278 90,553

#Ratings 2,326,913 239,330 242,013 2,000,000 20,000,263 48,619

3.6.1 Experimental Settings

3.6.1.1 Datasets

Three real-world datasets are used in the experiments — namely, the two public bench-

mark datasets of Netflix Prize1 and MovieLens 20M2 and a Douban dataset that was

crawled from the Douban website. Since MovieLens 20M contains more than 20 mil-

lion ratings (it is relatively richer), for the diversity of the experiments, a subset was

extracted from the Netflix Prize, which has a smaller scale of ratings (2 million). The

details of these three datasets are shown in Table 4.1.

For the CDR experiments, DoubanMovie was taken as the source domain corre-

sponding to the target domains DoubanBook and DoubanMusic. For the CSR ex-

periments, Netflix and MovieLens were taken as the source systems, and a subset

Douban*Movie from DoubanMovie was extracted as the target system. The number-

s of common items for Netflix-Douban* and for MovieLens-Douban* are 3,700 and

5,712, respectively. For the Douban dataset, the numbers of Movie-Music and Movie-

Book common users are 295 and 379, respectively.

In the experiments, each dataset was split into a training set (80%) with the early

ratings and a test set (20%) with the later ratings. The sequences of ratings and latent

factors may have slightly affected the performances of MF and mapping, respectively.

Therefore, the average results of five random times were reported.

1https://www.kaggle.com/netflix-inc/netflix-prize-data
2https://www.kaggle.com/grouplens/movielens-20m-dataset
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3.6.1.2 Parameter Setting

The dimension K of the latent factor was set as 10, 20, 50 and 100, respectively.

To generate the benchmark factors, k = 5 was set for top-k similar items or users.

For the DNN, the depth of the hidden layers d was set to five because when d > 5,

the performances of the methods almost do not change. The dimension of the input

and output of the DNN was set to K, and the number of hidden nodes was set to

1.5 × K. The parameters were randomly initialised, as suggested in [30] — that is,

W ∼ U [− 1√
2K
, 1√

2K
]. Additionally, the batch size was set to 32, and the learning rate

was set to 0.005.

3.6.1.3 Experimental Tasks and Evaluation Metrics

In total, two CDR tasks and two CSR tasks were designed as follows:

- Task 1: DoubanMovie→ DoubanBook (for CDR),

- Task 2: DoubanMovie→ DoubanMusic (for CDR),

- Task 3: Netflix→ Douban*Movie (for CSR),

- Task 4: MovieLens→ Douban*Movie (for CSR).

The mean absolute error (MAE) and the root mean squared error (RMSE) were used

as metrics to evaluate the recommendation performance. These metrics are commonly

used in the literature for both CDR and CSR [84, 139].

3.6.1.4 Comparison Methods

In the experiments, the DCDCSR framework was implemented into three methods by

applying MMMF, PMF and BPR as the MF models — that is, MMMF

DCDCSR, PMF DCDCSR and BPR DCDCSR.
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The study’s three DCDCSR methods were compared with the following seven

methods that were implemented from three representative models:

- Bayesian personalised ranking model (BPR) [91]: BPR is a ranking-oriented

MF model. It was chosen as a conventional baseline method running on the tar-

get domain and system, which does not take any cross-domain or cross-system

strategies.

- Active transfer learning framework (ATL) [139]: This is a state-of-the-art frame-

work that uses transfer learning (TL). It offers three methods. In this thesis’s ex-

periments, the two well-performing methods of MMMF TL and PMF TL were

chosen.

- Embedding and mapping framework (EMCDR) [71]: This is a state-of-the-art

framework that uses linear matrix translation (LIN) and MLP. It adopts PMF and

BPR as its MF models and maps the latent factors across domains or systems

with both LIN and MLP (2 × 2). Therefore, this framework offers four meth-

ods — namely, MF EMCDR LIN, MF EMCDR MLP, BPR EMCDR LIN and

BPR EMCDR MLP, which are all compared in the experiments.

3.6.2 Performance Comparison and Analysis

All the experimental results are presented in Tables 3.2 - 3.5.

3.6.2.1 Result 1: The Effect of Latent Factor Dimension

To answer question Q1, this thesis investigates how the performance of the DCDCSR

framework is affected by the dimension K of the latent factors. From Tables 3.2-3.5,

it can be observed that when K = 10 or 20, the performances of DCDCSR methods

generally increase (i.e., the MAE and RMSE decrease) with K. However, when K =

50, no significant improvement is observed in the performance. Moreover, when K =
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Table 3.2: The experimental results of CDR (Part 1)

Cross-Domain Recommendation (CDR)
Task 1 Task 2

MAE RMSE MAE RMSE

K=10

BPR 0.7187 (± 0.0011 )0.9386 (± 0.0014) 0.7231 (± 0.0012) 0.9416 (± 0.0017)
MMMF TL 0.7001 (± 0.0009)0.9128 (± 0.0007) 0.6978 (± 0.0006) 0.9093 (± 0.0005)

PMF TL 0.7022 (± 0.0016)0.9187 (± 0.0006) 0.7077 (± 0.0008) 0.9097 (± 0.0005)
MF EMCDR LIN 0.7065 (± 0.0003)0.9103 (± 0.0006) 0.7024 (± 0.0012) 0.9163 (± 0.0004)
MF EMCDR MLP 0.7011 (± 0.0015)0.9071 (± 0.0009) 0.7022 (± 0.0008) 0.9045 (± 0.0012)
BPR EMCDR LIN 0.7084 (± 0.0012)0.9111 (± 0.0006) 0.7065 (± 0.0005) 0.9105 (± 0.0013)
BPR EMCDR MLP 0.7061 (± 0.0005)0.9054 (± 0.0005) 0.6987 (± 0.0003) 0.9055 (± 0.0008)
MMMF DCDCSR 0.7041 (± 0.0005)0.8971 (± 0.0004) 0.6992 (± 0.0003) 0.8875 (± 0.0002)

PMF DCDCSR 0.7037 (± 0.0005)0.8965 (± 0.0003) 0.6996 (± 0.0004) 0.8866 (± 0.0002)
BPR DCDCSR 0.6943 (± 0.0003)0.8881 (± 0.0006) 0.6971 (± 0.0008) 0.8872 (± 0.0004)

K=20

BPR 0.7146 (± 0.0014)0.9292 (± 0.0007) 0.7234 (± 0.0011) 0.9352 (± 0.0006)
MMMF TL 0.7068 (± 0.0004)0.9146 (± 0.0008) 0.7109 (± 0.0003) 0.9104 (± 0.0002)

PMF TL 0.7017 (± 0.0003)0.9188 (± 0.0008) 0.7176 (± 0.0004) 0.9244 (± 0.0006)
MF EMCDR LIN 0.7015 (± 0.0008)0.9070 (± 0.0006) 0.7021 (± 0.0006) 0.9076 (± 0.0019)
MF EMCDR MLP 0.7021 (± 0.0003)0.9095 (± 0.0005) 0.7001 (± 0.0003) 0.9095 (± 0.0005)
BPR EMCDR LIN 0.7041 (± 0.0009)0.9174 (± 0.0005) 0.7021 (± 0.0008) 0.9147 (± 0.0012)
BPR EMCDR MLP 0.7023 (± 0.0006)0.9074 (± 0.0006) 0.7021 (± 0.0008) 0.9047 (± 0.0012)
MMMF DCDCSR 0.7001 (± 0.0002)0.8876 (± 0.0004) 0.6987 (± 0.0003) 0.8866 (± 0.0003)

PMF DCDCSR 0.7003 (± 0.0004)0.8872 (± 0.0005) 0.6985 (± 0.0003) 0.8879 (± 0.0004)
BPR DCDCSR 0.6941 (± 0.0002)0.8845 (± 0.0001)0.6949 (± 0.0004) 0.8867 (± 0.0003)

100, the performances depict a slight decline. This is because the number of DNN

parameters geometrically increases by K. When K = 100, while the training data

remains the same, the performance of the DNN mapping declines slightly.

3.6.2.2 Result 2: Cross-Domain Recommendation (Tasks 1 & 2)

To answer question Q2, this thesis compares the performances of its methods and the

seven comparison methods in the CDR tasks (Tasks 1 & 2). From Tables 3.2-3.5, it can

be observed that, for the CDR tasks, MMMF DCDCSR does not perform as well as

PMF DCDCSR and BPR DCDCSR. This is because its MF model cannot effectively

learn a predicted matrix R̂ by maximising the predictive trace margin in the target

domains DoubanBook and DoubanMusic.

Specifically, in terms of MAE, PMF DCDCSR performed the best. It also outper-
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Table 3.3: The experimental results of CDR (Part 2)

Cross-Domain Recommendation (CDR)
Task 1 Task 2

MAE RMSE MAE RMSE

K=50

BPR 0.7115 (± 0.0014)0.9413 (± 0.0011) 0.7252 (± 0.0005) 0.9464 (± 0.0008)
MMMF TL 0.7062 (± 0.0010)0.9189 (± 0.0009) 0.7143 (± 0.0007) 0.9132 (± 0.0004)

PMF TL 0.7022 (± 0.0005)0.9203 (± 0.0004) 0.7121 (± 0.0012) 0.9287 (± 0.0007)
MF EMCDR LIN 0.7051 (± 0.0003)0.9080 (± 0.0002) 0.7021 (± 0.0008) 0.9082 (± 0.0006)
MF EMCDR MLP 0.7065 (± 0.0005)0.9114 (± 0.0006) 0.7076 (± 0.0004) 0.9086 (± 0.0008)
BPR EMCDR LIN 0.7055 (± 0.0007)0.9086 (± 0.0004) 0.7020 (± 0.0002) 0.9084 (± 0.0003)
BPR EMCDR MLP0.6917 (± 0.0004)0.8994 (± 0.0005) 0.6987 (± 0.0004) 0.9003 (± 0.0001)
MMMF DCDCSR 0.7003 (± 0.0002)0.8880 (± 0.0003) 0.6988 (± 0.0001) 0.8889 (± 0.0001)

PMF DCDCSR 0.6941 (± 0.0001)0.8871 (± 0.0002) 0.6918 (± 0.0004) 0.8925 (± 0.0002)
BPR DCDCSR 0.6954 (± 0.0002) 0.8862 (± 0.0003) 0.6957 (± 0.0002) 0.8874 (± 0.0002)

K=100

BPR 0.7199 (± 0.0005)0.9332 (± 0.0011) 0.7303 (± 0.0005) 0.9396 (± 0.0005)
MMMF TL 0.7104 (± 0.0003)0.9191 (± 0.0002) 0.7124 (± 0.0003) 0.9241 (± 0.0001)

PMF TL 0.7089 (± 0.0005)0.9213 (± 0.0004) 0.7071 (± 0.0008) 0.9207 (± 0.0005)
MF EMCDR LIN 0.6994 (± 0.0012)0.9094 (± 0.0009) 0.7026 (± 0.0009) 0.9097 (± 0.0003)
MF EMCDR MLP 0.7014 (± 0.0004)0.9001 (± 0.0004) 0.7011 (± 0.0004) 0.8991 (± 0.0005)
BPR EMCDR LIN 0.6985 (± 0.0004)0.9098 (± 0.0001) 0.7030 (± 0.0008) 0.9099 (± 0.0003)
BPR EMCDR MLP0.7024 (± 0.0006)0.8981 (± 0.0003) 0.7089 (± 0.0001) 0.8972 (± 0.0002)
MMMF DCDCSR 0.7004 (± 0.0003)0.8904 (± 0.0002) 0.7005 (± 0.0002) 0.8932 (± 0.0003)

PMF DCDCSR 0.6986 (± 0.0001)0.8895 (± 0.0004) 0.6942 (± 0.0001) 0.8931 (± 0.0001)
BPR DCDCSR 0.6971 (± 0.0001)0.8882 (± 0.0002) 0.6998 (± 0.0003) 0.8904 (± 0.0001)

formed the seven comparison methods by an average of 1.42%, ranging from 0.94% to

3.57%. Moreover, in terms of RMSE, BPR DCDCSR performed the best. It also out-

performed the seven comparison methods by an average of 2.6%, ranging from 1.66%

to 5.41%. Compared to all seven comparison methods, this thesis’s methods clearly

performed better because its sparsity-guided DNN mapping process can map the latent

factors across domains more accurately.

3.6.2.3 Result 3: Cross-System Recommendation (Tasks 3 & 4)

To answer question Q2, this experiment compares the performances of its method-

s and the seven comparison methods in the CSR tasks (Tasks 3 & 4). From Tables

3.2-3.5, it can be observed that except when K = 10 in Task 4, BPR DCDCSR out-

performed MMMF DCDCSR and PMF DCDCSR. This is because its MF model can
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Table 3.4: The experimental results of CSR (Part 1)

Cross-System Recommendation (CSR)
Task 3 Task 4

MAE RMSE MAE RMSE

K=10

BPR 0.7524 (± 0.0014)0.9628 (± 0.0016)0.7524 (± 0.0014)0.9628 (± 0.0016)
MMMF TL 0.7162 (± 0.0012)0.8951 (± 0.0003)0.7090 (± 0.0007)0.8997 (± 0.0003)

PMF TL 0.7031 (± 0.0008)0.8913 (± 0.0012)0.7120 (± 0.0003)0.9030 (± 0.0007)
MF EMCDR LIN 0.7096 (± 0.0008)0.9113 (± 0.0007)0.7340 (± 0.0009)0.9326 (± 0.0007)
MF EMCDR MLP 0.7087 (± 0.0008)0.9049 (± 0.0005)0.7045 (± 0.0004)0.9062 (± 0.0005)
BPR EMCDR LIN 0.7038 (± 0.0004)0.9035 (± 0.0003)0.7080 (± 0.0005)0.9043 (± 0.0006)
BPR EMCDR MLP0.6995 (± 0.0005)0.8994 (± 0.0003)0.6991 (± 0.0002)0.8994 (± 0.0005)
MMMF DCDCSR 0.6998 (± 0.0003)0.8865 (± 0.0002)0.6994 (± 0.0005)0.8836 (± 0.0004)

PMF DCDCSR 0.6838 (± 0.0012)0.8681 (± 0.0011)0.6753 (± 0.0006)0.8659 (± 0.0007)
BPR DCDCSR 0.6786 (± 0.0007)0.8651 (± 0.0008)0.6854 (± 0.0014)0.8712 (± 0.0009)

K=20

BPR 0.7432 (± 0.0012)0.9532 (± 0.0014)0.7432 (± 0.0012)0.9532 (± 0.0014)
MMMF TL 0.6915 (± 0.0002)0.8922 (± 0.0003)0.7026 (± 0.0003)0.8986 (± 0.0002)

PMF TL 0.7024 (± 0.0003)0.8969 (± 0.0002)0.7057 (± 0.0003)0.9012 (± 0.0003)
MF EMCDR LIN 0.7027 (± 0.0005)0.9074 (± 0.0013)0.6977 (± 0.0015)0.9032 (± 0.0002)
MF EMCDR MLP 0.6995 (± 0.0003)0.8995 (± 0.0003)0.6993 (± 0.0005)0.8995 (± 0.0005)
BPR EMCDR LIN 0.7060 (± 0.0007)0.9024 (± 0.0005)0.6949 (± 0.0006)0.9012 (± 0.0008)
BPR EMCDR MLP0.6991 (± 0.0005)0.8993 (± 0.0003)0.6995 (± 0.0002)0.8999 (± 0.0002)
MMMF DCDCSR 0.7004 (± 0.0003)0.8875 (± 0.0004)0.7012 (± 0.0001)0.8816 (± 0.0004)

PMF DCDCSR 0.6880 (± 0.0001)0.8609 (± 0.0006)0.6805 (± 0.0004)0.8654 (± 0.0001)
BPR DCDCSR 0.6723 (± 0.0002)0.8556 (± 0.0008)0.6780 (± 0.0003)0.8601 (± 0.0002)

create numerous triples in the target system Douban* to train the parameters, which

can generate relatively accurate latent factors.

Specifically, in terms of MAE, BPR DCDCSR outperformed all seven comparison

methods by an average of 4.20%, ranging from 3.00% to 9.00%. Moreover, in terms of

RMSE, BPR DCDCSR outperformed all seven comparison methods by an average of

4.46%, ranging from 3.43% to 9.08%. Compared to all seven comparison methods, this

study’s methods clearly performed better because its sparsity-guided DNN mapping

process maps the latent factors across systems more accurately.

Further, the proposed DCDCSR methods delivered more improvements in terms

of MAE and RMSE in Result 3 when compared to Result 2. This is because these

methods can effectively use the ratings of the source systems MovieLens and Netflix

when the ratings are much richer than those of the target system Douban*.
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Table 3.5: The experimental results of CSR (Part 2)

Cross-System Recommendation (CSR)
Task 3 Task 4

MAE RMSE MAE RMSE

K=50

BPR 0.7252 (± 0.0012)0.9364 (± 0.0018) 0.7252 (± 0.0012)0.9364 (± 0.0018)
MMMF TL 0.6899 (± 0.0002)0.8851 (± 0.0003) 0.6948 (± 0.0003)0.8975 (± 0.0004)

PMF TL 0.7011 (± 0.0012)0.8954 (± 0.0010) 0.7021 (± 0.0007)0.8974 (± 0.0012)
MF EMCDR LIN 0.7095 (± 0.0014)0.9062 (± 0.0005) 0.7012 (± 0.0007)0.9055 (± 0.0009)
MF EMCDR MLP 0.6997 (± 0.0005)0.8997 (± 0.0004) 0.6993 (± 0.0006)0.8995 (± 0.0002)
BPR EMCDR LIN 0.7013 (± 0.0004)0.9034 (± 0.0012) 0.6983 (± 0.0005)0.9016 (± 0.0008)
BPR EMCDR MLP0.7022 (± 0.0011)0.8981 (± 0.0005) 0.6995 (± 0.0004)0.9003 (± 0.0001)
MMMF DCDCSR 0.6924 (± 0.0007)0.8856 (± 0.0005) 0.6935 (± 0.0002)0.8746 (± 0.0003)

PMF DCDCSR 0.8655 (± 0.0009)0.6794 (± 0.0014) 0.8636 (± 0.0011)
BPR DCDCSR 0.6712 (± 0.0008)0.8555 (± 0.0007)0.6595 (± 0.0003) 0.8564 (± 0.0002)

K=100

BPR 0.7334 (± 0.0012)0.9321 (± 0.0004) 0.7334 (± 0.0012)0.9321 (± 0.0004)
MMMF TL 0.6931 (± 0.0002)0.8772 (± 0.0003) 0.6948 (± 0.0003)0.8997 (± 0.0002)

PMF TL 0.7020 (± 0.0003)0.8966 (± 0.0002) 0.6995 (± 0.0003)0.8954 (± 0.0005)
MF EMCDR LIN 0.7045 (± 0.0005)0.9060 (± 0.0003) 0.6961 (± 0.0002)0.9082 (± 0.0012)
MF EMCDR MLP 0.7001 (± 0.0002)0.9008 (± 0.0008) 0.6998 (± 0.0012)0.9004 (± 0.0001)
BPR EMCDR LIN 0.7077 (± 0.0011)0.9072 (± 0.0002) 0.7017 (± 0.0006)0.9099 (± 0.0008)
BPR EMCDR MLP0.6999 (± 0.0005)0.9000 (± 0.0008) 0.6995 (± 0.0002)0.9003 (± 0.0006)
MMMF DCDCSR 0.6915 (± 0.0004)0.8798 (± 0.0002) 0.6865 (± 0.0009)0.8769 (± 0.0004)

PMF DCDCSR 0.6852 (± 0.0012)0.8718 (± 0.0009) 0.6814 (± 0.0003)0.8665 (± 0.0004)
BPR DCDCSR 0.6745 (± 0.0008)0.8612 (± 0.0011) 0.6678 (± 0.0004)0.8594 (± 0.0002)

3.6.2.4 Experimental Summary

According to Result 1, question Q1 can be answered as follows: In general, the per-

formances of DCDCSR methods increase with the dimension K of the latent factors

when K ∈ {10, 20}. However, when K ∈ {50, 100}, the performances display no

significant improvement, and even decline slightly. According to Results 2 and 3,

question Q2 can be answered as follows: In general, the proposed DCDCSR methods

outperformed all comparison methods for both CDR and CSR because its sparsity-

guided DNN mapping process can map latent factors across domains or systems more

accurately. Additionally, comparing Results 2 and 3 demonstrated that these methods

can effectively utilise more rating data.
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3.7 Summary

In this chapter, a Deep framework for both CDR and CSR, called DCDCSR, has been

proposed, which is based on MF models and a fully connected Deep Neural Network

(DNN). The DNN is applied to more accurately map the latent factors across domains

or systems. In addition, the sparsity degrees of individual users and items are utilised

in the source and target domains or systems to guide the DNN training process, which

can effectively utilise more rating data. The superior performance of our model has

been demonstrated by extensive experiments conducted on three real-world datasets.



Chapter 4

DTCDR: A Framework for

Dual-Target Cross-Domain

Recommendation

All these existing CDR approaches only focus on how to leverage the source domain

to help improve the recommendation accuracy in the target domain, but not vice ver-

sa. Namely, they are single-target CDR approaches. However, each domain may be

relatively richer in certain types of information (e.g., ratings, reviews, user profiles,

item details and tags). Therefore, if such information can be leveraged effectively, it is

possible to improve the recommendation performance in both domains simultaneously

rather than in only a single-target domain.

Nevertheless, the novel dual-target CDR problem faces a new challenge, without

any solution reported in the literature. This has introduced in Section 1.2.2 and ex-

pressed by CH2: ‘how can a feasible framework for dual-target CDR be devised?’.

As an option, MTL has the potential for dual-target CDR because it aims to improve

models’ generalisation by leveraging the domain-specific information that is derived

from the related recommendation tasks [94]. However, existing MTL-based recom-

mendation approaches [3, 69] cannot be efficiently applied to dual-target CDR. This

is because they heavily rely on the local feature representation and side information

(additional information associated with the users and items) from a single domain, and

such features and information in the sparser domain may be too sparse to support dual-

73



§4.1 Problem Statement 74

target CDR. Additionally, MDR can also be considered another option. However, the

proposed MDR models in [135, 80, 85, 137] achieved different goals — they either fo-

cused on improving the recommendation accuracies of specific or common users that

were selected from multiple domains, or they only focused on improving the recom-

mendation accuracy on a single-target domain. None of these possible methods can

improve the recommendation accuracies of all users on multiple domains simultane-

ously. Therefore, existing MDR models cannot serve for dual-target CDR directly.

Moreover, to address the data sparsity problem, multi-source information — such

as ratings, reviews, user profiles, item details and tags — that is derived from both do-

mains should be leveraged to obtain more general user and item embeddings. There-

fore, for dual-target CDR, there is another challenge, which has introduced in Section

1.2.3 and expressed by CH3: ‘How can data richness and diversity be leveraged to

generate more representative single-domain user/item embeddings for improving rec-

ommendation accuracy in both domains?’.

To target the above challenges, we propose a novel framework for dual-target CDR

in this chapter. To the best of our knowledge, this is the first work in the literature to

propose the novel problem of dual-target CDR and provide a solution for it. The

detailed framework is explained as follows.

4.1 Problem Statement

For readability purposes, the important notations of this chapter are listed in Tables

A.1 and A.2. Based on these notations, the dual-target CDR is defined as follows:

Definition 4. Dual-target cross-domain recommendation

- Given two observed domains A and B which include the user ratings {Ra, Rb},

the user comments {Ca, Cb}, the user profiles {UP a, UP b}, and the item details

{IDa, IDb},

- The goal of dual-target CDR is to recommend the matched items Vi to any user
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Figure 4.1: The general structure of the DTCDR framework

ui on any of the two domains, rather than to only a user in the target domain for

CDR.

In regard to the dual-target CDR problem, a certain degree of overlap is necessary

between the users of different domains (i.e., common users), which can be used to link

the two domains and share knowledge across them. This is common in the existing

CDR approaches.

4.2 The General Framework for Dual-Target CDR

By targeting dual-target CDR, a general framework called DTCDR is proposed, as

shown in Figure 4.1. The core idea of this framework is to utilise the data richness and

diversity from the two domainsA andB to improve the recommendation accuracies in

both domains simultaneously. The framework contains four main parts: Input Layer,

Sharing Layer, Model Layer and Output Layer.

These main parts can be summarised as follows:

- Input Layer: First, as mentioned in problem formulation,5 the input of the

DTCDR framework contains users’ explicit feedback (ratings and comments),

user profiles and item details. Different domains may be richer in certain types
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of input data. According to different methods of embedding processing, the data

of the Input Layer is divided into two types — the ratings and the content of

users and items. The Input Layer contains the input data from domains A and

B.

- Sharing Layer: On the top of the Input Layer, the Sharing Layer mainly focuses

on combining the related data of common users from two domains by combining

features and sharing them for the recommendation models of the two domains.

The main goal of feature combination is to utilise the data richness and diversity

of common users from both domains.

- Model Layer: In the Model Layer, both the distinct data from a domain and the

shared data from the two domains are taken as the input, and the recommenda-

tion model is trained in each domain separately.

- Output Layer: Finally, the trained model can make recommendations for the

corresponding domain in the Output Layer.

Note that this general framework can be extended for MDR if a certain degree of

overlap could be found among multiple domains. This chapter only focuses on dual-

target CDR with two domains.

Based on the core idea of the general DTCDR framework, this thesis proposes a

specific MTL-based solution in the following sections.

4.3 Multi-Task Learning-Based Solution for the Gen-

eral DTCDR Framework

As shown in Figure 4.1, the recommendation models in different domains are parallel

and closely related; the embeddings learned by ratings and content can thus be com-

bined and shared by MTL. In this section, a specific MTL-based solution is posited for

the DTCDR framework, as shown in Figure 4.2.
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Figure 4.2: MTL-based solution for the DTCDR framework

Based on the general framework in Figure 4.1, the Sharing Layer is further divided

into an Embedding Layer and a Combination Layer, and the Model Layer is imple-

mented with the Neural Network Layer. Therefore, the specific MTL-based solution

(see Figure 4.2) includes five layers: the Input Layer, Embedding Layer, Combination

Layer, Neural Network Layer and Output Layer.

These layers can be described as follows:

- Input Layer: First, the Input Layer contains the input data (ratings and content)

from domains A and B.

- Embedding Layer: Above the Input Layer is the Embedding Layer, in which

document embedding UC is generated for users and V C for items, and rating

embedding U is generated for users and V for items. The detailed embedding

processes will be explained in Sections 4.3.1 and 4.3.2.

- Combination Layer: Above the Embedding Layer is the Combination Layer,
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which combines the document embedding and the rating embedding as the opti-

mised embeddings P a, Qa, P b, and Qb for users and items in the two domains.

Specifically, Max-Pooling was first chosen to combine the embeddings of com-

mon users that were learned from different domains because different domains

are richer in certain types of input data, and because we expect to remain the

dominating factors of them. Then, to be adaptable to different dual-target C-

DR scenarios, an effective embedding-sharing strategy was designed in which

three representative combination operators were chosen to respectively combine

the rating embedding and document embedding: Concatenation (Concat), Max-

Pooling (MP) and Average-Pooling (AP). Concat can preserve all embeddings

that are learned from content and ratings, MP tends to remain their remarkable

factors and AP preserves the mean values of content and rating embeddings.

These combination operators can utilise document and rating embeddings in di-

verse ways and make this thesis’s models adaptable to different scenarios.

- Neural Network Layer: This layer is used to model a non-linear interaction

relationship between users and items, which can represent a complex user-item

interaction relationship. A conventional MLP is adopted in this layer.

- Output Layer: Based on the Neural Network Layer, P , Q are mapped to the

predicted user-item interaction matrix Ŷ in the Output Layer. The training pro-

cess in this layer involves minimising the error between the predicted user-item

interaction matrix Ŷ and the observed user-item interaction matrix Y .

The specific MTL-based solution is presented in Algorithm 2, with details ex-

plained in the following sections.

This thesis’s proposed DTCDR framework can also apply to CSR [139, 142] —

in which the two systems have the same domain but different users, and they can

thus contain common items only, such as DoubanMovie and MovieLens (see Task

3 in Section 4.4). Accordingly, in Figure 4.2, common users must be replaced with

common items for supporting dual-target CSR.
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Algorithm 2 MTL-based solution for the DTCDR framework
Require: (Input Layer) Two observed domains A and B, including the user ratings
{Ra, Rb}, the user comments {Ca, Cb}, the user profiles {UP a, UP b}, the item details
{IDa, IDb}, the number of training iterations num iter, and the model type Mt (NeuM-
F DTCDR or DMF DTCDR).

Ensure: Recommend items Vi ⊆ V to a target user ui in any of the two domains.
1: # Embedding Layer:
2: Learn UCa, V Ca from Ca, UP a, and IDa, by the document embedding model;
3: Pre-train Ua, V a from Ra by rating embedding models;
4: Learn UCb, V Cb from Cb, UP b, and IDb, by the document embedding model;
5: Pre-train U b, V b from Rb by rating embedding models;
6: while epoch from 1 to num iter do
7: # Combination Layer:
8: Get the common users Uac = Ubc = Ua

⋂
Ub;

9: Get the distinct users Uad = Ua − Uac in domain A;
10: Get the distinct users Ubd = Ub − Ubc in domain B;
11: U c = Uac ⊕ U bc;
12: UCc = UCac ⊕ UCbc;
13: P a = [U c ⊗ UCc;Uad ⊗ UCad];
14: P b = [U c ⊗ UCc;U bd ⊗ UCbd];
15: Qa = V a ⊗ V Ca;
16: Qb = V b ⊗ V Cb;
17: # Neural Network (NN) Layers & Output Layer:
18: Train the NN in domain A and B by Equation (4.10);
19: if Mt is NeuMF DTCDR then
20: Predict user-item interactions Ŷ a in domain A by Equation (4.11);
21: else
22: Predict user-item interactions Ŷ a in domain A by Equation (4.12);
23: end if
24: Repeat Lines 19 to 23 to predict user-item interactions Ŷ b in domain B;
25: end whilereturn Vi according to Ŷ a and Ŷ b.

4.3.1 Document Embedding for Embedding Layer

In regard to the content information of each domain, multi-source content information

(e.g., reviews, user profiles, item details and tags) of users and items was considered

to generate the text vectors by using document embedding. Document embedding is

used to map documents or paragraphs to text vectors. The representative work for

document embedding is Doc2Vec [56], which contains two sub-models — distributed

memory and distributed bag of words (DBOW). DBOW was chosen as the training

algorithm because in the proposed framework, the text vectors should not be affected
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by the word order in each document (considering that DBOW does not preserve any

word order).

The detailed process worked as described in the following: first, for user ui, ui’s

user profile upi was combined with ui’s comments (reviews and tags) Ci∗ to obtain a

document di, while for item vj , its item detail idj is combined with the comments C∗j

on vj to obtain a document dm+j . Then, the natural language tool StanfordCoreNLP

[72] is applied for cleaning text data and word segmentation of the documents D =

{d1, d2, ..., dm+n}. Finally, the documents D were mapped into corresponding text

vectors UC and V C for users and items respectively by using the Doc2Vec model.

4.3.2 Rating Embedding for Embedding Layer

In regard to the rating information of each domain, the latent factors U and V were

generated for users and items based on two popular neural network-based models (i.e.,

NeuMF or DMF). In fact, in Section 4.3.3, these two rating embedding models will

be optimised and deeply integrated within the proposed framework. The NeuMF and

DMF models will be briefly introduced here, and further details can be found in [38,

123]. The general objective function can be represented as follows:

min
∑

r∈R+∪R−

`(y, ŷ) + λΩ(Θ), (4.1)

where `(∗) denotes a loss function, R+ denotes the observed ratings, R− means all

zero elements in R, r̂ is the predicted rating for r, Ω(Θ) is the regulariser and λ is

a hyper-parameter that controls the importance of the regulariser. Note that in this

study’s experiments, a certain number of negative instances were sampled, denoted by

R−sampled, to replace R−, which is widely used [91, 38, 123].
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4.3.2.1 Neural Matrix Factorization

NeuMF [38] only considers implicit feedback that is deserved from explicit ratings,

and its user-item interaction can be represented as:

yij =

 1, if rij is known;

0, otherwise.
(4.2)

NeuMF employs a generalised MF (GMF) model and an MLP to learn the user-item

interaction function to predict ratings. First, the mapping function of GMF is expressed

as:

φGMF = PG �QG, (4.3)

where PG and QG are user and item latent factors that were generated by the GMF

model and � denotes the element-wise product of vectors.

The mapping function of MLP is expressed as:

φMLP = f(WL(...f(W2

 PM

QM

+ b2)...) + bL), (4.4)

where PM andQM are user and item latent factors that were generated by the first layer

of the MLP model, f(*) is the activation function ReLU — that is, f(x) = max(0, x),

W2, ...,WL and b2, ..., bL are the weights and biases of the MLP model.

Based on Equations (4.3, 4.4), the NeuMF model predicts the interaction of user

ui on item vj as follows:

ŷij = f(h>

 φGMF
ij

φMLP
ij

),

h←

 αhGMF

(1− α)hMLP

 ,
(4.5)

where hGMF and hMLP denote the edge weights of the output layers of the GMF and
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MLP models, respectively, and α is a hyper-parameter.

NeuMF chooses the cross-entropy loss as its loss function, which can be formulat-

ed as follows:

`(y, ŷ) = y log ŷ + (1− y) log(1− ŷ). (4.6)

4.3.2.2 Deep Matrix Factorization

Compared to NeuMF, the DMF model [123] considers both implicit and explicit feed-

back, and its user-item interaction can be represented as:

yij =

 rij, if rij is known;

0, otherwise.
(4.7)

The core idea of the DMF model is to evaluate the cosine similarities between the

user and item latent factors that were learned by their own corresponding ratings.

The DMF model first predicts user and item latent factors P = {p1, p2, ..., pm},

Q = {q1, q2, ..., qn} and then evaluates the cosine similarities between them as the

predicted ratings R̂. The details are as follows:

ŷij = cosine(pi, qj) =
p>i qj
‖pi‖‖qj‖

,

pi = f(...f(WU2f(ri∗WU1))),

qj = f(...f(WV2f(r∗jWV1))),

(4.8)

where f(∗) is ReLU function, ri∗ represents user ui’s ratings across all items, r∗j rep-

resents item vj’s ratings across all users, WU1 ,WU2 ... and WV1 ,WV2 ... are the weights

of multilayer networks in the different layers for P and Q, respectively.

DMF improves the loss function of NeuMF (Equation (4.6)) and proposes a so-
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called normalised cross-entropy loss, which is formulated as follows:

`(y, ŷ) =
y

max(R)
log ŷ + (1− y

max(R)
) log(1− ŷ), (4.9)

where max(R) is the maximum rating in a dataset (e.g., five for a five-star system).

4.3.3 Model Training

The DTCDR models were trained by the following objective function in domain A:

min
Pa,Qa,Θa

∑
y∈Y a+∪Y a−

`(y, ŷ) + λ(‖P a‖2
F + ‖Qa‖2

F ),

[P a, Qa] = [[U c ⊗ UCc;Uad ⊗ UCad], [V a ⊗ V Ca]],

(4.10)

where Θa is the parameter set for domain A and ⊗ is the combination operator. The

predicted user-item interaction ŷ ∈ Ŷ will be defined according to the specific rating

embedding model in the following sections (see Equations (4.11) and (4.12)). Ad-

ditionally, U c and UCc represent the rating embedding and document embedding of

common users from different domains, while Uad, UCad, V a and V Ca represent the

embeddings of distinct users and all items from domain A. Likewise, the objective

function in domain B can be obtained. The detailed combination process for P a, Qa,

P b and Qb is shown between Lines 8 to 16 in Algorithm 2.

4.3.3.1 A DTCDR model through NeuMF (NeuMF DTCDR)

NeuMF is first taken as the rating embedding model for this thesis’s MLT-based solu-

tion. Therefore, in domain A, the predicted user-item interaction of NeuMF DTCDR
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for user ui on item vj can be defined as:

ŷij = f(

 P a
i

Qa
j

),

P a
i =

Ui ⊗ UCi, ui ∈ Uac;

Ua
i ⊗ UCa

i , ui ∈ Uad,

Qa
j = V a

j ⊗ V Ca
j ,

 Ua
i

V a
j

← h>

 φGMFa

ij

φMLPa

ij

 , h←

 αhGMF

(1− α)hMLP

 ,
(4.11)

where f(∗) is ReLU function, hGMF and hMLP denote the edge weights of the GMF

and MLP model output layers, respectively, and α is a hyper-parameter. Additional-

ly, Uac and Uad represent the common and distinct users, respectively, in domain A.

Moreover, ⊗ represents a combination operator (i.e., Concat, MP or AP). Here, pro-

viding flexibility and determining which operator is more suitable in a special CDR

scenario is the aim. Likewise, the predicted user-item interactions of NeuMF DTCDR

can be obtained in domain B.

4.3.3.2 A DTCDR model through DMF (DMF DTCDR)

DMF was then taken as the rating embedding model for the MLT-based framework.

Based on the DMF model, the three different combination operators were also chosen

to combine the latent factors and the text vectors for users and items.

In domain A, the predicted user-item interaction of DMF DTCDR for user ui on

item vj can be redefined as:

ŷij = cosine(P a
i , Q

a
j ) =

[P a
i ]>Qa

j

‖Qa
i ‖‖Qa

j‖
,

Ua
i = f(...f(W a

U2
f(ri∗W

a
U1

))),

V a
j = f(...f(W a

V2
f(r∗jW

a
V1

))),

(4.12)

where f(∗) is ReLU function, ri∗ represents user ui’s ratings across all items, r∗j repre-
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Table 4.1: The experimental datasets for DTCDR

Datasets Douban MovieLens
Domains Music Book Movie Movie
#Users 1,672 2,110 2,712 10,000
#Items 5,567 6,777 34,893 9,395

#Interactions 69,709 96,041 1,278,401 1,462,905
Sparsity 99.25% 99.33% 98.65% 98.44%

sents item vj’s ratings across all users, WU1 ,WU2 ... and WV1 ,WV2 ... are the weights of

the multilayer networks in the different layers for U and V , respectively. Additionally,

P a
i andQa

j have been formulated in Equation (4.11). Likewise, the predicted user-item

interactions of DMF DTCDR can be obtained in domain B.

4.4 Experiments on DTCDR

Extensive experiments were conducted on real-world datasets to answer the following

five key questions:

- Q1: How does this thesis’s approach outperform the state-of-the-art single-

domain and cross-domain models? (See Result 1)

- Q2: How does the dimension k of latent factors and text vectors affect the per-

formance of this thesis’s models? (See Result 2)

- Q3: How do the three combination operators of MTL affect the performance of

this thesis’s models? (See Result 3)

- Q4: How do document embedding and MTL contribute to performance im-

provement? (See Result 4)?

- Q5: How does this thesis’s approach perform on Top-N recommended lists?

(See Result 5)
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4.4.1 Experimental Settings

4.4.1.1 Datasets

Four real-world datasets were chosen for the experiments: the benchmark dataset

MovieLens 20M [35] and three Douban datasets (including DoubanMusic, Douban-

Book and DoubanMovie, which were crawled from the Douban website). The three

Douban datasets were filtered, and the users and items with at least 5 interactions were

kept. Additionally, for the MovieLens 20M dataset, 10, 000 users who have at least

five interactions were chosen. The details are listed in Table 4.1.

The three Douban datasets contained user profiles, item details, ratings, reviews

and tags, while the MovieLens dataset contained item genres, ratings and tags. Three

experimental tasks were designed based on these four datasets, as described in the

following section.

4.4.1.2 Experimental Tasks

To validate the performance of the DTCDR models and baseline models in different

CDR scenarios, two CDR tasks were designed (Tasks 1 and 2). In addition, as men-

tioned in Section 4.3, the DTCDR models can apply to CSR scenarios, in which there

are common items only. Task 3 was thus designed to validate the performance of the

DTCDR framework and baseline models in a CSR scenario. The detailed tasks are

listed as follows:

- Task 1: DoubanMovie+DoubanBook (2, 106 common users).

- Task 2: DoubanMovie+DoubanMusic (1, 666 common users).

- Task 3: DoubanMovie+MovieLens (4, 115 common movies).

4.4.1.3 Parameter Setting

For a fair comparison, both the parameters of the DTCDR models and those of the

baseline models were optimised. For the Input Layer and Embedding Layer in Figure
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4.2, the hyper-parameters of the Doc2Vec model were set, as suggested in [56], and

the dimension k of the text vectors and latent factors as {8, 16, 32, 64}. In the Neural

Network Layer, the structure is e → 32 → 16 → k, where k is the output size (i.e.,

the dimension of the latent factors) and e is the combined size. For different rating

embedding models and combination operators, e has different values. For example,

if the combination operator is Concat for DMF DTCDR, then e = 2 ∗ k; elsewise,

e = k. The parameters of the neural network are initialised as the Gaussian distribution

X ∼ N(0, 0.01). For NeuMF DTCDR, λ = 0.001, the learning rate is 0.001 and the

batch size is 1, 024, while for DMF DTCDR, λ was set as 0.001, the learning rate as

0.0001 and the batch size as 256. The Adaptive Moment Estimation (Adam) [50] was

in this thesis’s models. Additionally, the number of training iterations num iter was

set as 50 and the best performance was reported in the experimental results.
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4.4.1.4 Evaluation Metrics

The ranking-based evaluation strategy was adopted in this study (i.e., the leave-one-out

evaluation), which has been widely used in the baseline models (e.g., BPR, NeuMF

and DMF). That is, for each test rating from a test user on a test item, 99 unrated items

were randomly sampled for the test user, and then the test item was ranked among

the 100 items. The recommendation performance is evaluated by two metrics — the

Hit Ratio (HR) and the Normalised Discounted Cumulative Gain (NDCG) [38], HR

measures whether the test item is ranked on the top-N list, while NDCG measures the

specific ranking quality that assigns high scores to hits at top position ranks.

4.4.1.5 Comparison Methods

The NeuMF DTCDR and DMF DTCDR models were compared with the following

seven baseline models in two groups of SDR and CDR, respectively. These baseline

models are the most relevant methods because each model is a representative or state-

of-the-art method with different embedding and transfer strategies. For a clear com-

parison, the detailed training data types, embedding strategies and transfer strategies

of the baseline models and DTCDR models are listed in Table 4.2.

(1) Single-domain recommendation (SDR baselines)

- BPR [91] is a representative pairwise learning-based MF model that focuses on

minimising the ranking loss between predicted ratings and observed ratings.

- NeuMF [38] is a representative NN-based CF model that replaces the conven-

tional inner product with a neural architecture to improve recommendation ac-

curacy.

- DMF [123] is a state-of-the-art NN-based CF model that employs a deep archi-

tecture to learn the low-dimensional factors of users and items.

(2) Cross-domain recommendation (CDR baselines)
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SDR Baselines: BPR NeuMF DMF CDR Baselines: CTR-RBF BPR_EMCDR_LIN BPR_EMCDR_MLP BPR_DCDCSR

Our DTCDR Models (with different operators): NeuMF_DTCDR_Concat NeuMF_DTCDR_MP NeuMF_DTCDR_AP DMF_DTCDR_Concat DMF_DTCDR_MP DMF_DTCDR_AP
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Figure 4.3: The experimental result of Task 1. Note: DoubanBook is the target domain for
CDR baseline models

- A non-linear transfer-learning framework (CTR-RBF) [122] is a framework

that incorporates the review text. This is a state-of-the-art CDR model, consid-

ering both content and rating information for generating user and item embed-

dings.

- The EMCDR [71] utilises LIN and an MLP to represent the relations between the

latent factors of two domains. The most promising models — BPR EMCDR LIN

and BPR EMCDR MLP — were implemented into this framework as base-

lines.

- The DCDCSR framework [142] is a state-of-the-art deep framework that trans-

fers latent factors across domains. The most promising model — BPR DCDCSR
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SDR Baselines: BPR NeuMF DMF CDR Baselines: CTR-RBF BPR_EMCDR_LIN BPR_EMCDR_MLP BPR_DCDCSR

Our DTCDR Models (with different operators): NeuMF_DTCDR_Concat NeuMF_DTCDR_MP NeuMF_DTCDR_AP DMF_DTCDR_Concat DMF_DTCDR_MP DMF_DTCDR_AP
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Figure 4.4: The experimental result of Task 2. Note: DoubanMusic is the target domain for
CDR baseline models

— was implemented as a baseline in the experiments.

4.4.2 Performance Comparison and Analysis

To answer the five key questions Q1-Q5, the following experiments were conducted

and the corresponding results were analysed.

4.4.2.1 Result 1: Performance Comparison (for Q1)

To answer Q1, the performance of the proposed NeuMF DTCDR and DMF DTCDR

models are compared with the performance of the seven baseline models. For the three

SDR models, they were trained in both domains, and the corresponding experimental



§4.4 Experiments on DTCDR 92

SDR Baselines: BPR NeuMF DMF CDR Baselines: CTR-RBF BPR_EMCDR_LIN BPR_EMCDR_MLP BPR_DCDCSR

Our DTCDR Models (with different operators): NeuMF_DTCDR_Concat NeuMF_DTCDR_MP NeuMF_DTCDR_AP DMF_DTCDR_Concat DMF_DTCDR_MP DMF_DTCDR_AP
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Figure 4.5: The experimental result of Task 3. Note: DoubanMovie is the target domain for
CDR baseline models

results were obtained. For the four cross-domain baseline models, they were trained

based in the two domains and then validated in the target (sparser) domain. The target

domains were DoubanBook, DoubanMusic and DoubanMovie for Tasks 1, 2 and 3,

respectively.

Figures 4.3, 4.4 and 4.5 show the performance of HR@10 and NDCG@10 with

different factor dimensions for Tasks 1, 2 and 3, respectively. In both the sparser and

richer domains, the NeuMF

DTCDR and DMF DTCDR models, on average, outperformed the three single-domain

baseline models (BPR, NeuMF and DMF) by 13.73%, 10.82% and 8.97% respectively

for HR@10, and by 18.83%, 13.98%, and 11.77% respectively for NDCG@10. In the

sparser (target) domains, the NeuMF DTCDR and DMF DTCDR models, on average,
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Figure 4.6: Performance comparison with and without document embedding (DE) on Douban-
Music (k = 8 and the combination operator is Concat). Note that NeuMF+ and DMF+ rep-
resent NeuMF and DMF with DE while NeuMF DTCDR− and DMF DTCDR− represent
NeuMF DTCDR and DMF DTCDR without DE

outperformed the four cross-domain baseline models (CTR-RBF, BPR EMCDR LIN,

BPR EMCDR MLP and BPR DCDCSR) by 9.63%, 9.90%, 10.06% and 6.20% re-

spectively for HR@10, and by 11.91%, 13.40%, 13.84% and 9.37% respectively for

NDCG@10. It is worth noting that in most cases (46 out of 48 cases), the worst-

performing model still outperformed the best-performing baseline model on average

by 3.09% for HR@10 and by 5.88% for NDCG@10. In all cases, this thesis’s best-

performing model improved the best-performing baseline model on average by 9.45%

for HR@10 and by 13.90% for NDCG@10.

Summary 1: In general, the NeuMF DTCDR and DMF DTCDR models outper-

formed both the single-domain baseline models and the cross-domain baseline model-

s. This is because this thesis’s models could leverage the richness and diversity of the

information of both domains, as well as effectively share the embeddings of common

users across domains and avoid over-fitting. These models can improve the recommen-

dation performance in the two domains or systems, which illustrates the effectiveness

of the DTCDR models.

4.4.2.2 Result 2: The Effect of Factor Dimension (for Q2)

To answer Q2, the effect of k on model performance is analysed in Figures 4.3, 4.4

and 4.5. Specifically, when k ∈ {8, 16}, this thesis’s models can achieve the best
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performance on the three experimental tasks. When k ∈ {32, 64}, the performance of

the models begins to gradually decline. This is because the number of neural network

parameters geometrically increases with k, while the training data is relatively sparser;

this can lead to over-fitting when k > 16.

Summary 2: The dimension k of factors is a sensitive parameter in the NeuMF DTCDR

and DMF DTCDR models. In general, when k ≤ 16, the recommendation perfor-

mance of the NeuMF DTCDR and DMF DTCDR models increased with k. However,

when k > 16, the performance began to gradually decline due to over-fitting.

4.4.2.3 Result 3: The Effect of Combination Operators (for Q3)

To answer Q3, the performance of the NeuMF DTCDR and DMF DTCDR models

was compared, with both models having different combination operators (Concat, MP

and AP). As depicted in Figures 4.3, 4.4 and 4.5, when compared to MP and AP,

it could be observed that the Concat, NeuMF DTCDR and DMF DTCDR models

achieved the best performance in most cases. This is because, to a large extent, Concat

can preserve all embeddings of different domains. MP tends to preserve dominating

factors and lose generality, while AP preserves generality but is easily affected by

noisy embeddings.

Summary 3: Concat can cause a better and more stable performance for the NeuM-

F DTCDR and DMF DTCDR models. In some isolated cases, MP can also achieve

effective performance. The performance of AP is worse than the two operators, mainly

because AP can be easily affected by noisy embeddings.

4.4.2.4 Result 4: Contributions of Document Embedding and Multi-Task Learn-

ing (for Q4)

The performances of NeuMF, DMF, NeuMF DTCDR, DMF DTCDR (with and with-

out document embedding), CTR-RBF and BPR DCDCSR were compared. This ex-

periment as conducted on the DoubanMusic dataset and was evaluated by HR@10
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with k = 8. As can be observed from Figure 4.6, with the assistance of document

embedding, the performance of NeuMF+ and DMF+ is always better than their pure

models (NeuMF and DMF). According to the best performance among all 50 itera-

tions, their improvements were 1.50% and 2.34%, respectively. Meanwhile, NeuM-

F DTCDR and DMF DTCDR outperformed their simplified models (without docu-

ment embedding) (NeuMF DTCDR− and DMF DTCDR−) by 1.84% and 1.07%, re-

spectively.

Additionally, without document embedding and only based on MTL, the NeuM-

F DTCDR− still outperformed NeuMF, NeuMF+, CTR-RBF and BPR DCDCSR af-

ter 27 iterations. Similarly, the DMF DTCDR− still outperformed DMF, DMF+, CTR-

RBF and BPR DCDCSR after 20 iterations. According to the recorded best perfor-

mance of the models among all 50 iterations, this thesis’s models, NeuMF DTCDR−

and DMF DTCDR−, outperformed all six baseline models (NeuMF, NeuMF+, DMF,

DMF+, CTR-RBF and BPR DCDCSR) by 6.12%, 4.79%, 5.72%, 4.38%, 3.35% and

2.07%, respectively.

Summary 4: Document embedding can improve recommendation performance, as

the text vectors that were learned by document embedding can provide more pri-

or knowledge to the recommendation models instead of only the initialisation by a

random or Gaussian distribution. Additionally, without document embedding, the

NeuMF-DTCDR− and DMF-DTCDR− can still achieve good performance, so long

as the models can be well trained. This is because the MTL technique is applied for

sharing the features of common users and items across domains, which can effectively

mitigate the data sparsity problem.

4.4.2.5 Result 5: Performance of Top-N Recommendation (for Q5)

To answer Q5, the performance of Top-N recommendation is compared in terms

of HR@N , in which the ranking position N ranges from 1 to 10 and k is 8. To

clearly demonstrate the comparison of the performance, only the performances of

NeuMF DTCDR Concat, DMF DTCDR Concat and the baseline models were report-
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Figure 4.7: The result of Top-N recommendation for Task 1

ed for Task 1. As can be observed from Figure 5.4, the performance of the NeuM-

F DTCDR Concat and DMF DTCDR Concat is consistently better in both datasets

than that of the other seven baseline models. In regard to the Douban-Movie, DM-

F DTCDR Concat depicted a better performance than NeuMF DTCDR Concat, while

for the Douban-Book, the performance of NeuMF DTCDR Concat was better than

that of DMF DTCDR Concat when N was greater than four. In this case, the NeuM-

F DTCDR Concat and DMF DTCDR Concat improved, on average, the single-domain

baselines (BPR, NeuMF and DMF) by 18.36%, 15.62% and 12.24% respectively.

They also improved the cross-domain baselines (CTR-RBF, BPR EMCDR LIN, BPR

EMCDR MLP and BPR DCDCSR) by 12.16%, 12.20%, 16.71% and 8.55%.

Summary 5: In general, the NeuMF DTCDR Concat and DMF DTCDR Concat out-

performed the seven baseline models for Top-N recommendation, and DMF DTCDR

Concat demonstrated a better performance than NeuMF DTCDR Concat in most cas-

es. This is because this thesis’s models can leverage the richness and diversity of the

information of both domains, as well as effectively share the embeddings of common

users across domains.
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4.5 Summary

In this chapter, a general framework for Dual-Target Cross-Domain Recommendation,

called DTCDR, has been proposed, which leverages ratings and multi-source content

to improve the recommendation performance on dual-target domains simultaneously.

The document embedding and rating embedding techniques are proposed to generate

the text and rating embeddings of users and items. Based on multi-task learning, a flex-

ible and effective embedding-sharing strategy is adopted to combine and share the em-

beddings of common users across domains. Finally, extensive experiments conducted

on real-world datasets have demonstrated the superior performance of our models.



Chapter 5

A Graphical and Attentional

Framework for Dual-Target

Cross-Domain Recommendation

Existing CDR approaches tend to leverage the auxiliary information on a richer do-

main to only help improve the recommendation accuracy on a sparser domain, which

results in single-target CDR. In contrast, the novel dual-target CDR has been recently

proposed to improve the recommendation accuracies in both richer and sparser do-

mains simultaneously by effectively utilising the information or knowledge from both

domains [141, 63].

Inspired by the DTCDR framework proposed in Chapter 4, this chapter attempts to

achieve a higher goal — further improving the recommendation performance in both

domains. However, in addition to the original challenges CH2 and CH3 that have been

introduced in Sections 1.2.2 and 1.2.3, the higher goal faces a new challenge that has

introduced in Section 1.2.4 and expressed by CH4: ‘How can the user or item embed-

dings in each target domain be effectively optimised for improving recommendation

accuracies in both domains?’.

In this chapter, the dual-target CDR problem is first normalised. Then, to address

the challenges CH2-CH4, the novel GA-DTCDR is proposed, followed by its detailed

components. This detailed framework is explained in the following sections.

98
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5.1 Problem Statement

First, for readability purposes, the important notations section is listed in Table A.3.

Dual-target CDR is defined as follows:

Definition 5. Dual-target cross-domain recommendation

- Input: Given two related domains a and b including explicit feedback (e.g.,

ratings and comments), implicit feedback (e.g., purchase and browsing histories)

and side information (e.g., user profiles and item details).

- Output: The DTCDR aims to improve the recommendation accuracies in both

domains simultaneously by leveraging their observed information.

Note that a certain degree of overlap between the users of domains a and b (i.e.,

common users) plays a key role in bridging the two domains and in exchanging knowl-

edge across domains. This is a common idea in the existing single-target and dual-

target CDR approaches.

5.2 The Proposed GA-DTCDR

The novel GA-DTCDR is proposed for targeting the dual-target CDR problem. As

shown in Figure 5.1, this framework is divided into five main components: the Input

Layer, Graph Embedding Layer, Feature Combination Layer, Neural Network Layers

and Output Layer. The details of each component will be presented below.

5.2.1 Input Layer

First, for the input of the GA-DTCDR, both explicit feedback (ratings and comments)

and side information (user profiles and item details) were considered. These input

data can be generally classified into two categories: rating information and content

information.
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Figure 5.1: The structure of the GA-DTCDR framework

5.2.2 Graph Embedding Layer

The rating and content information of domains a and bwere then leveraged to construct

a heterogeneous graph that represents user-item interaction relationships, user-user

similarity relationships and item-item similarity relationships. Based on the graph,

the graph-embedding model, Node2vec [33], was applied to generate user and item

embedding matrices.

5.2.2.1 Feature Combination Layer

An element-wise attention mechanism was then proposed to combine the common

users’ embeddings for domains a and b. This layer intelligently provides a set of

weights to the two embeddings of a common user that were learned from both do-

mains; it also generates a combined embedding for the common user, which remains
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Figure 5.2: Graph embedding

the user’s features that were learned from domains a and b with different proportions.

5.2.3 Neural Network Layers

In this component, a fully connected neural network (i.e., MLP) is applied to represent

a non-linear relationship between users and items in each domain.

5.2.4 Output Layer

Last, final user-item interaction predictions can be generated. The training of this mod-

el is mainly based on the loss between predicted user-item interactions and observed

user-item interactions.

In fact, like the single-target or dual-target CDR approaches in [139, 142, 141],

the GA-DTCDR framework can also be applied to CSR, in which the two systems

have the same domain but different users and thus contain common items only, such

as DoubanMovie and MovieLens (see Task 3 in Experiments and Analysis). Ac-

cordingly, as shown in Figure 5.1, common users need only be replaced with common

items for supporting dual-target CSR.
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Figure 5.3: Document embedding

5.3 Graph Embedding Layer

Existing embedding strategies for RSs mainly focus on representing the user-item in-

teraction relationship. Apart from this relationship, a graph is used to also represent

user-user and item-item relationships. Therefore, based on the rating and content in-

formation that was observed from domains a and b, two heterogeneous graphs were

constructed, including nodes (users and items) and weighted edges (ratings and con-

tent similarities), for domains a and b, respectively. More representative user and item

embedding matrices could then be genereted. The details of graph embedding are pre-

sented in Figure 5.2, which contains three main components: Document Embedding,

Graph Construction and Output.
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5.3.1 Document Embedding

To construct the heterogeneous graph, the content similarities between two users or

two items must be computed. To this end, multi-source content information is consid-

ered (e.g., reviews, tags, user profiles, item details), which was observed from domains

a and b, to generate user and item content embedding matrices. In this chapter, the most

widely used model is adopted (i.e., Doc2vec [56]) as the document embedding tech-

nique. The detailed document embedding process worked as follows: 1) In the training

set, for a user ui, the comments (reviews and tags) Ci∗ and the user profile upi of ui

were collected in the same document di, while for an item vj , the comments (reviews

and tags) C∗j on the item and its item detail idj were collected in the same document

dm+j; 2) the words were then segmented in the documents D = {d1, d2, ..., dm+n} by

using the most widely used natural language tool — StanfordCoreNLP [72]; 3) Final-

ly, the Doc2vec model was applied to map the documents D into the text vectors UC

and V C for users and items, respectively. Document Embedding details are presented

in Figure 5.3.

5.3.1.1 Graph Construction

The users and items are first linked through their interaction relationships. The weights

of these interaction edges are normalised ratings (i.e., R/max(R)). To consider the

user-user and item-item relationships in the heterogeneous graph, the synthetic edges

were generated between two users or two items according to their normalised content

similarities (edge weights). The generation probability P (i, l) of the edge between

users ui and ul is expressed as follows:

P (i, l) = α · sim(UCi, UCl), (5.1)

where α is a hyper-parameter that controls the sampling probability and sim(UCi, UCl)

is the normalised cosine similarity between UCi and UCl. Similarly, the generation

probability between two items can be obtained. Based on the user-item interaction
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relationships, user-user similarity relationships and item-item similarity relationships,

the heterogeneous graphs Ga and Gb can be constructed for domains a and b, respec-

tively.

5.3.1.2 The Output of Document Embedding

Based on the two heterogeneous graphs Ga and Gb, the graph-embedding model N-

ode2vec [33] is employed to generate a user embedding matrix U and item embedding

matrix V .

5.4 Feature Combination Layer

In this layer, the embeddings of common users learned from domains a and b are com-

bined by an element-wise attention mechanism. In this way, the combined embeddings

of common users Ũ for each domain can remain both features that were learned from

the two domains in different proportions. The traditional attention mechanism tends

to selectively focus on a certain part of representative features, and it provides these

features higher weights when generating the combined features [5]. Similarly, for a

common user ui, the element-wise attention mechanism tends to pay more attention to

the more informative elements from each pair of elements in Ua
i and U b

i , respective-

ly. The element-wise attention mechanism can thus generate two more representative

embeddings Ũa
i and Ũ b

i of the common user ui for domains a and b, respectively.

Recalling the motivating example in this thesis’s Introduction, the GA-DTCDR

can pay more attention to Alice’s movie features, while the approach can pay more

attention to Bob’s book features. Based on this idea, the GA-DTCDR thus combines

his/her movie and book features to improve the recommendation accuracies in both

movie and book domains simultaneously.

The structure of element-wise attention is demonstrated in the Feature Combina-

tion Layer of Figure 4.2. The combined embedding Ũa
i of a common user ui for

domain a can be represented as:
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Ũa
i = W a � Ua

i + (1−W a)� U b
i , (5.2)

where � is the element-wise multiplication and W a ∈ Rma×k is the weight matrix for

the attention network in domain a. Similarly, the combined embedding Ũ b
i of ui can

be obtained for domain b.

Note that for distinct users and all the items in domains a and b, their embeddings

are reserved without using the attention mechanism. This is because they do not have

dual embeddings in both domains a and b.

5.5 Training for Neural Network Layers and Output

Layer

First, the model is trained with the following objective function in domain a:

min
Pa,Qa,Θa

∑
y∈Y a+∪Y a−

`(y, ŷ) + λ(‖P a‖2
F + ‖Qa‖2

F ), (5.3)

where `(y, ŷ) is a loss function between an observed interaction y and its correspond-

ing predicted interaction ŷ (see Eq. (5.5)), Y a+ and Y a− denote all the observed and

unobserved user-item interactions in domain a respectively, ‖P a‖2
F + ‖Qa‖2

F is the

regulariser (see Eq. (5.6)) and λ is a hyper-parameter that controls the importance of

the regulariser. To avoid this model becoming over-fitted to Y + (positive instances), a

certain number of unobserved user-item interactions were randomly selected as neg-

ative instances, denoted by Y −sampled, to replace Y −. This training strategy has been

widely used in existing approaches [38].

Based on rating information, the user-item interaction yij between a user ui and an
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item vi can be represented as:

yij =


rij, if yij ∈ Y +;

0, if yij ∈ Y −sampled;

null, otherwise.

(5.4)

A normalised cross-entropy loss was chosen, which can be represented as:

`(y, ŷ) =
y

max(R)
log ŷ + (1− y

max(R)
) log(1− ŷ), (5.5)

where max(R) is the maximum rating in a domain.

As shown in the Neural Network Layers of Figure 5.1, the GA-DTCDR framework

employed a neural network (i.e., MLP) to represent a non-linear relationship between

users and items. The input-embedding matrices of users and items in domain a for

the MLP are P a
in = [Ũa;Uad] and Qa

in = V a respectively, where Ũa is the combined

embedding matrix of common users for domain a and Uad is the embedding matrix of

distinct users in domain a. Therefore, the embedding of user ui and item embedding

of item vj in the output layer of the MLP can be represented as:

P a
i = P a

outi
= f(...f(f(P a

ini
·W a

P1
) ·W a

P2
)),

Qa
j = Qa

outj
= f(...f(f(Qa

inj
·W a

Q1
) ·W a

Q2
)),

(5.6)

where the activation function f(∗) is ReLU, W a
P1
,W a

P2
... and W a

Q1
,W a

Q2
... are the

weights of multilayer networks in different layers in domain a for P a
ini

and Qa
inj

, re-

spectively.

Finally, in the Output Layer of Figure 5.1, the predicted interaction ŷij between ui

and vj in domain a is expressed as follows:

ŷaij = cosine(P a
i , Q

a
j ) =

P a
i ·Qa

j

‖P a
i ‖‖Qa

j‖
. (5.7)
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Table 5.1: The experimental datasets for GA-DTCDR

Datasets Douban MovieLens
Domains Book Music Movie Movie
#Users 2,110 1,672 2,712 10,000
#Items 6,777 5,567 34,893 9,395

#Interactions 96,041 69,709 1,278,401 1,462,905
Density 0.67% 0.75% 1.35% 1.56%

In contrast to the conventional inner product, the greatest advantage of cosine distance

for interaction prediction is that it does not need to normalise separately.

Similarly, the predicted interaction ŷbij can be obtained in domain b.

5.6 Experiments on GA-DTCDR

Extensive experiments were conducted on four real-world datasets to answer the fol-

lowing key questions:

- Q1: How does this thesis’s model outperform the state-of-the-art models? (See

Result 1)

- Q2: How does the element-wise attention mechanism contribute to performance

improvement? (See Result 2)

- Q3: How does the dimension k of embeddings affect the performance of the

model? (See Result 3)

- Q4: How does the model perform on Top-N recommended lists? (See Result

4)?
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Table 5.2: The experimental tasks for GA-DTCDR

Tasks Sparser Richer Overlap

CDR
Task 1 DoubanBook DoubanMovie #Common Users = 2,106
Task 2 DoubanMusic DoubanMovie #Common Users = 1,666

CSR Task 3 DoubanMovie MovieLens #Common Items = 4,115

5.6.1 Experimental Settings

5.6.1.1 Experimental Datasets and Tasks

To validate the recommendation performance of the GA-DTCDR approach and base-

line approaches, four real-world datasets were chosen (see Table 5.1).

For the three Douban subsets, the users and items with at least 5 interactions were

kept, while for MovieLens 20M, a subset MovieLens was extracted that contained

10, 000 users who had also experienced at least 5 interactions. This filtering strategy

has been widely used in existing approaches [123, 128]. According to the observed

data, the three Douban subsets contained ratings, reviews, tags, user profiles and item

details, while the MovieLens subset contained ratings, tags and item details. Based

on these four datasets, 2 CDR tasks and 1 CSR task were designed (see Table 5.2) to

validate the recommendation performance in CDR and CSR scenarios, respectively.

5.6.1.2 Parameter Setting

For fair comparison, the parameters of the GA-DTCDR and those of the baselines

were optimised. For the Graph Embedding Layer in Figure 5.1, the hyper-parameters

of Doc2vec and Node2vec models were set, as suggested in [56, 33], and the sampling

probability αwas set as 0.05. In the Neural Network Layers of Figure 5.1, the structure

of the layers is ‘k → 2k → 4k → 8k → 4k → 2k → k’ and the parameters of

the neural network are initialised as the Gaussian distribution X ∼ N (0, 0.01). To

train the GA-DTCDR, 7 negative instances were randomly selected for each observed

positive instance into Y −sampled, Adam [50] was adopted to train the neural network
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and the maximum number of training epochs was to 50. The learning rate was 0.001,

the regularisation coefficient λ was 0.001 and the batch size was 1, 024. To answer

Q3, the dimension k of the embedding varied in {8, 16, 32, 64, 128}. Finally, the best

performance in all 50 training epochs were reported as our experimental results.

5.6.1.3 Evaluation Metrics

To evaluate the recommendation performances of the GA-DTCDR and baseline ap-

proaches, the ranking-based evaluation strategy was adopted, which has been widely

used in the literature [123, 118]. The latest interaction with a test item was chosen

as the test interaction for each test user, 99 unobserved interactions for the test user

were randomly sampled and then the test item was ranked among the 100 items. The

ranking-based strategy, or the Leave-one-out evaluation, includes the two main met-

rics ofHR and NDCG [118]. HR@N is the recall rate, while NDCG@N measures the

specific ranking quality that assigns high scores to hits at top position ranks. Note that

only HR@10 and NDCG@10 results were reported in Results 1-3, and only HR@N

and NDCG@N results were reported in Result 4.
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5.6.1.4 Comparison Methods

As shown in Table 5.3, the GA-DTCDR is compared with the seven baseline mod-

els in three groups: SDR, single-target CDR and dual-target CDR. All these models

are representative and/or state-of-the-art approaches for each group. Additionally, for

ablation study, a simplified version of the GA-DTCDR was implemented (the GA-

DTCDR Average), which replaced element-wise attention with a fixed combination

strategy (i.e., AP). For a clear comparison, Table 5.3 depicts the detailed training da-

ta types, encoding strategies, embedding strategies and transfer strategies of all nine

models that were implemented in the experiments.

5.6.2 Performance Comparison and Analysis

To answer the four questions Q1-Q4, the following experiments were conducted and

the corresponding results were analysed.

5.6.2.1 Result 1: Performance Comparison (for Q1)

To answer Q1, the performance of this thesis’s GA-DTCDR was compared with the

performance of the seven baseline models. Note that the SDR baselines were trained

in each domain and had their performance in each domain reported; that the single-

target CDR baselines were trained in both domains and had only their performance in

the sparser domain reported; and that the dual-target CDR models were trained in both

domains and had their performance in each domain reported.

Tables 5.4, 5.5, and 5.6 display the experimental results in terms of HR@10 and

NDCG@10, with different embedding dimensions k for Tasks 1, 2 and 3 respectively.

As indicated in Tables 5.4, 5.5 and 5.6, this thesis’s GA-DTCDR outperformed all

SDR, single-target CDR and dual-target CDR baselines by an average improvement of

8.46%. Specifically, this thesis’s GA-DTCDR improved the best-performing baselines

(with results marked by ‘*’ in Tables 5.4, 5.5 and 5.6) by an average of 10.34% for Task

1, 10.29% for Task 2 and 4.76% for Task 3. This is because this thesis’s GA-DTCDR
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Table 5.4: The experimental results (HR@10 & NDCG@10) for Tasks 1 (the best-performing
baselines with results marked by *)

Task Domain
SDR baselines Single-target CDR baselines

NeuMF DMF CTR-RBF BPR DCDCSR TMH
HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

Task1
(k = 8)

DoubanBook (sparser) .3810 .2151 .3841 .2265 .3830 .2217 .3954 .2419 .4199 .2583*
DoubanMovie (richer) .5266 .2911 .5498 .3114 - - - - - -

Task 1
(k = 16)

DoubanBook (sparser) .3833 .2181 .3854 .2356 .3870 .2256 .4014 .2413 .4331 .2522*
DoubanMovie (richer) .5282 .2939 .5573 .3141 - - - - - -

Task 1
(k = 32)

DoubanBook (sparser) .3899 .2182 .3871 .2340 .3956 .2264 .4079 .2436 .4468* .2647*
DoubanMovie (richer) .5411 .2991 .5612 .3254 - - - - - -

Task 1
(k = 64)

DoubanBook (sparser) .3908 .2226 .3917 .2362 .4017 .2314 .4107 .2454 .4504* .2768*
DoubanMovie (richer) .5449 .3152 .5632 .3387 - - - - - -

Task 1
(k = 128)

DoubanBook (sparser) .4012 .2310 .4046 .2451 .4171 .2532 .4111 .2431 .4523* .2814*
DoubanMovie (richer) .5512 .3301 .5776 .3505 - - - - - -

Task Domain
Dual-target CDR baselines Dual-target CDR (our) Improvement

(GA-DTCDR vs.
best baselines)

DMF DTCDR
Concat DDTCDR

GA-DTCDR
Average GA-DTCDR

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

Task1
(k = 8)

DoubanBook (sparser) .4412* .2571 .4033 .2257 .4057 .2513 .4479 .2759 1.52% 6.81%
DoubanMovie (richer) .6032* .3732* .5612 .3185 .5968 .3546 .6518 .4025 8.06% 7.85%

Task 1
(k = 16)

DoubanBook (sparser) .4408* .2513 .4054 .2292 .4190 .2577 .4706 .2900 6.76% 14.99%
DoubanMovie (richer) .6080* .3721* .5750 .3595 .6013 .3596 .6566 .4014 10.80% 7.87%

Task 1
(k = 32)

DoubanBook (sparser) .4318 .2461 .4180 .2344 .4346 .2610 .4758 .2896 6.50% 9.41%
DoubanMovie (richer) .6011* .3718* .5739 .3386 .6374 .3896 .6747 .4187 12.24% 12.61%

Task 1
(k = 64)

DoubanBook (sparser) .4265 .2452 .4258 .2430 .4423 .2671 .4882 .3026 8.40% 9.32%
DoubanMovie (richer) .5998* .3649* .5825 .3553 .6416 .3941 .6817 .4205 13.65% 15.23%

Task 1
(k = 128)

DoubanBook (sparser) .4317 .2510 .4225 .2439 .4490 .2691 .4995 .3098 10.44% 10.09%
DoubanMovie (richer) .5991* .3680* .5863 .3589 .6449 .3981 .6957 .4406 16.12% 19.73%

effectively leverages the richness and diversity of the information in both domains, and

because it intelligently and effectively combines the embeddings of common users.

Summary 1: In all cases, this thesis’s GA-DTCDR outperformed both the single-

domain and cross-domain baseline models. This is because it leverages the richness

and diversity of the information of both domains and intelligently combines the em-

beddings of common users, thus improving the recommendation accuracies on dual-

target domains or systems.

5.6.2.2 Result 2: Ablation Study (for Q2)

To answer Q2, a variant of this thesis’s GA-DTCDR was implemented — the GA-

DTCDR Average — by replacing element-wise attention with AP. AP is the combi-

nation strategy used by the existing dual-target CDR approaches [141], and it pro-

vides the weight equally (0.5) to the embeddings of common users that were learned
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Table 5.5: The experimental results (HR@10 & NDCG@10) for Tasks 2

Task Domain
SDR baselines Single-target CDR baselines

NeuMF DMF CTR-RBF BPR DCDCSR TMH
HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

Task 2
(k = 8)

DoubanMusic (sparser) .3135 .1703 .3127 .1812 .3227 .1895 .3259 .1894 .3579 .2034
DoubanMovie (richer) .5266 .2911 .5498 .3114 - - - - - -

Task 2
(k = 16)

DoubanMusic (sparser) .3190 .1731 .3170 .1891 .3121 .1761 .3261 .1901 .3612 .2137
DoubanMovie (richer) .5282 .2939 .5573 .3141 - - - - - -

Task 2
(k = 32)

DoubanMusic (sparser) .3198 .1771 .3218 .1912 .3141 .1844 .3271 .1931 .3701* .2202*
DoubanMovie (richer) .5411 .2991 .5612 .3254 - - - - - -

Task 2
(k = 64)

DoubanMusic (sparser) .3242 .1791 .3267 .1926 .3324 .1916 .3304 .2001 .3882* .2323*
DoubanMovie (richer) .5449 .3152 .5632 .3387 - - - - - -

Task 2
(k = 128)

DoubanMusic (sparser) .3314 .1810 .3301 .1971 .3412 .1954 .3452 .2074 .3946* .2430*
DoubanMovie (richer) .5512 .3301 .5776 .3505 - - - - - -

Task Domain
Dual-target CDR baselines Dual-target CDR (our) Improvement

(GA-DTCDR vs.
best baselines)

DMF DTCDR
Concat DDTCDR

GA-DTCDR
Average GA-DTCDR

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
Task 2

(k = 8)
DoubanMusic (sparser) .3614* .2117* .3302 .1930 .3690 .2109 .3852 .2166 6.59% 2.31%
DoubanMovie (richer) .5873* .3867* .5655 .3629 .5987 .3731 .6470 .3983 10.17% 3.00%

Task 2
(k = 16)

DoubanMusic (sparser) .3663* .2213* .3451 .2092 .3706 .2037 .3947 .2256 7.75% 1.94%
DoubanMovie (richer) .5887* .3863* .5704 .3676 .6058 .3716 .6426 .3950 9.16% 2.25%

Task 2
(k = 32)

DoubanMusic (sparser) .3607 .2201 .3463 .2050 .3789 .2056 .4133 .2318 14.58% 5.32%
DoubanMovie (richer) .5770* .3758* .5739 .3726 .6145 .3754 .6677 .4141 15.72% 10.19%

Task 2
(k = 64)

DoubanMusic (sparser) .3571 .2109 .3466 .2045 .3812 .2144 .4384 .2489 12.93% 7.15%
DoubanMovie (richer) .5787* .3705* .5719 .3621 .6120 .3681 .6817 .4284 17.80% 15.63%

Task 2
(k = 128)

DoubanMusic (sparser) .3580 .2132 .3520 .2117 .3996 .2207 .4491 .2604 13.81% 7.16%
DoubanMovie (richer) .5792* .3742 .5748 .3762* .6311 .3859 .7068 .4526 22.03% 20.31%

from dual domains. As revealed in Tables 5.4, 5.5 and 5.6 with the element-wise at-

tention, this thesis’s GA-DTCDR improved GA-DTCDR Average by an average of

6.76%. This means that element-wise attention plays a crucial role in this thesis’s

GA-DTCDR and that the existing fixed combination strategies can hardly achieve an

effective embedding optimisation in each target domain.

Summary 2: Compared with the GA-DTCDR Average variant, this thesis’s GA-

DTCDR can significantly improve its recommendation accuracy. This result indicates

that element-wise attention significantly contributes to this thesis’s framework.

5.6.2.3 Result 3: Impact of Embedding Dimension k (for Q3)

To answer Q3, the effect of k on the performance of the GA-DTCDR framework as

depicted in Tables 5.4, 5.5 and 5.6 was analysed. In terms of HR@10 and NDCG@10,

the recommendation accuracy of the GA-DTCDR generally increased by k because a
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Table 5.6: The experimental results (HR@10 & NDCG@10) for Tasks 3

Task Domain
SDR baselines Single-target CDR baselines

NeuMF DMF CTR-RBF BPR DCDCSR TMH
HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

Task 3
(k = 8)

DoubanMovie (sparser) .5266 .2911 .5498 .3114 .5514 .3156 .5762 .3347 .5987 .3487
MovieLens (richer) .7818 .5024 .8115 .5219 - - - - - -

Task 3
(k = 16)

DoubanMovie (sparser) .5282 .2939 .5573 .3141 .5631 .3213 .5816 .3438 .6031 .3580
MovieLens (richer) .7901 .5084 .8143 .5212 - - - - - -

Task 3
(k = 32)

DoubanMovie (sparser) .5411 .2991 .5612 .3254 .5721 .3347 .5821 .3447 .6108 .3733*
MovieLens (richer) .7978 .5124 .8180 .5231* - - - - - -

Task 3
(k = 64)

DoubanMovie (sparser) .5449 .3152 .5632 .3387 .5704 .3327 .5926 .3559 .6186 .3754*
MovieLens (richer) .7935 .5149 .8231* .5277 - - - - - -

Task 3
(k = 128)

DoubanMovie (sparser) .5512 .3301 .5776 .3505 .5912 .3741 .6142 .3904 .6314 .3927*
MovieLens (richer) .8042 .5205 .8319* .5344 - - - - - -

Task Domain
Dual-target CDR baselines Dual-target CDR (our) Improvement

(GA-DTCDR vs.
best baselines)

DMF DTCDR
Concat DDTCDR

GA-DTCDR
Average GA-DTCDR

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
Task 3

(k = 8)
DoubanMovie (sparser) .6387* .3628* .6070 .3522 .6140 .3572 .6486 .4005 6.85% 10.39%

MovieLens (richer) .8328* .5293* .8211 .5283 .8225 .5241 .8541 .5372 2.56% 1.49%
Task 3

(k = 16)
DoubanMovie (sparser) .6391* .3606* .6100 .3518 .6266 .3710 .6514 .4018 1.92% 11.43%

MovieLens (richer) .8312* .5260* .8263 .5170 .8280 .5277 .8547 .5381 2.83% 1.02%
Task 3

(k = 32)
DoubanMovie (sparser) .6530* .3631 .6137 .3460 .6310 .3776 .6598 .4087 1.04% 9.48%

MovieLens (richer) .8243* .5213 .8111 .5167 .8301 .5280 .8612 .5478 4.48% 4.72%
Task 3

(k = 64)
DoubanMovie (sparser) .6477* .3605 .6200 .3544 .6423 .3841 .6654 .4101 2.73% 9.24%

MovieLens (richer) .8200 .5382* .8130 .5198 .8324 .5320 .8668 .5516 5.31% 2.50%
Task 3

(k = 128)
DoubanMovie (sparser) .6521* .3642 .6222 .3714 .6489 .3792 .6812 .4198 4.46% 6.90%

MovieLens (richer) .8267 .5401* .8210 .5311 .8349 .5381 .8642 .5512 3.88% 2.06%

larger embedding can represent a user/item more accurately. However, in light of the

structure of the neural network layers in the Parameter Setting, the training time of

the GA-DTCDR also increased with k. This is a trade-off. Therefore, in considering

both aspects, k = 64 is ideal in this thesis’s experiments.

Summary 3: Overall, the embedding dimension k is a sensitive parameter for recom-

mendation performance and training time. Both the recommendation performance and

the training time of the GA-DTCDR increased with k.

5.6.2.4 Result 4: Top-N Recommendation Performance (for Q4)

To answer Q4, the performance of top-N recommendation was compared in terms of

HR@N and NDCG@N , where N ranges from 1 to 10. The performance trends of

all top-N experiments (for all tasks with different k) are similar. Therefore, due to

space limitation, only the top-N recommendation results were reported for all sev-
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Figure 5.4: The result of Top-N recommendation for Task 1 (k = 8)

en baseline models, GA-DTCDR Average and GA-DTCDR for Task 1 (k = 8), as

shown in Figure 5.4. In Figure 5.4, in both the DoubanBook (sparser) and Douban-

Movie (richer) categories, the performance of the GA-DTCDR is consistently better

than those of all seven baselines and GA-DTCDR Average. For the DoubanBook cate-

gory, considering all top-N recommendations, this thesis’s GA-DTCDR improved the

best-performing baselines in different experimental cases by an average of 1.74% for

HR@N and 5.83% for NDCG@N . For the DoubanMovie category, the GA-DTCDR

improved the best-performing baselines in different experimental cases by an average

of 8.13% for HR@N and 7.55% for NDCG@N .

Summary 4: Overall, this thesis’s GA-DTCDR outperformed the eight baseline mod-

els for top-N recommendation. It was generally found that the larger the N , then the
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better the improvements the GA-DTCDR achieved.

5.7 Summary

In this chapter, a Graphical and Attention framework for Dual-Target Cross-Domain

Recommendation, called GA-DTCDR, has been proposed, which leverages the data

diversity and richness of two domains to improve the recommendation performance

on dual-target domains simultaneously. First, the heterogeneous graph is construct-

ed to include all relationships, i.e., user-item, user-user, and item-item relationships.

Then, the graph embedding technique is employed to generate more representative em-

bedding matrices of users and items. Based on the element-wise attention mechanism,

the embeddings of common users are intelligently combined to improve the recom-

mendation accuracies on both domains. Finally, extensive experiments conducted on

real-world datasets have demonstrated the superior performance of our GA-DTCDR.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Although CF has been widely used and has proven to be one of the most promising

techniques in many RSs, data sparsity is yet a long-standing problem in these systems.

This is because few of the users can provide enough ratings or reviews to many items,

which reduces the recommendation accuracy of existing CF-based models. This is e-

specially true for new users, who do not provide feedback to any items and exemplify

the cold-start problem (a special case of data sparsity). To address the data sparsi-

ty problem, CDR was proposed to leverage the auxiliary information from a source

domain with richer information to improve the recommendation accuracy in a target

domain with sparser information.

However, existing single-target CDR approaches have difficulty in accurately trans-

ferring knowledge from the source domain to the target domain. This leads to this the-

sis’s first challenge CH1: ‘How can an accurate mapping of the latent factors across

domains be found for enhancing recommendation accuracy?’.

Additionally, existing single-target CDR approaches can only improve the recom-

mendation accuracy in the target domain by leveraging the auxiliary information from

the source domain. This means that the source domain cannot be further improved by

leveraging the useful information from the target domain. However, it is intuitively

possible to improve the recommendation accuracy in both domains simultaneously by

using dual-target CDR, if the certain types of richer information from both domains

117
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can be leveraged effectively.

Achieving dual-target CDR involves facing the remaining three challenges identi-

fied in this thesis: CH2: ‘how can a feasible framework for dual-target CDR be de-

vised?’; CH3: ‘how can the data richness and diversity be leveraged to generate more

representative single-domain user and item embeddings for improving recommenda-

tion accuracy in both domains?’; and CH4: ‘how can the user or item embeddings be

effectively optimised in each target domain for improving recommendation accuracies

in both domains?’.

To target these four challenges, this thesis has proposed certain solutions:

• In targeting CH1 in Chapter 3, this thesis has proposed the DCDCSR frame-

work for both CDR and CSR; it is based on MF models and a fully connected

DNN, which is applied to more accurately map the latent factors across domain-

s or systems. Additionally, this thesis used the sparsity degrees of individual

users and items in the source and target domains or systems to guide the DNN

training process, which could effectively utilise more rating data. The superior

performances of this thesis’s model have been demonstrated by the extensive

experiments conducted on three real-world datasets.

• In targeting CH2 and CH3 in Chapter 4, the general framework of DTCDR

was proposed, which leverages ratings and multi-source content to improve the

recommendation performance on dual-target domains simultaneously. Docu-

ment embedding and rating embedding techniques were optimised to generate

the text and rating embeddings of users and items. Based on MTL, a flexible

and effective embedding-sharing strategy was adopted to combine and share the

embeddings of common users across domains. Finally, extensive experiments

that were conducted on real-world datasets have demonstrated the superior per-

formance of this thesis’s models.

• To target CH2, CH3 and CH4, in Chapter 5, the GA-DTCDR was proposed.

This framework utilised the graph-embedding technique to generate more repre-
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sentative user and item embeddings, as well as the element-wise attention mech-

anism to improve the recommendation accuracies in both domains simultane-

ously. Extensive experiments were also conducted to demonstrate the superior

performance of this thesis’s GA-DTCDR.

6.2 Future Work

This thesis has mainly focused on studying CDR and dual-target CDR problems. Three

frameworks have been proposed to address the four challenges listed earlier, and ex-

tensive experiments have been conducted to validate the performance of this thesis’s

proposed approaches. However, there are still unresolved issues, so any future work

should thus consider the following aspects:

• In Chapter 3, a deep framework for both CDR and CSR was proposed, one that

can accurately map the latent factors across domains or systems. It should be a

future goal to propose a more effective combination strategy that can generate

benchmark latent factors for accurate mapping. For example, attention networks

could be a good option to combine the latent factors learned from both domain-

s and generate more reasonable benchmark latent factors. To further improve

mapping quality, more linear and non-linear mapping strategies (e.g., deep &

wide learning and graph neural networks) could be used. Additionally, it should

be promising to devise a hybrid framework which can utilise the auxiliary infor-

mation from both a source domain and a source system to further improve the

recommendation accuracy in a target domain or system — CDR + CSR.

• A dual-target CDR framework was proposed in Chapter 4 that can improve the

recommendation performance in both domains simultaneously. In future stud-

ies, the approach to multi-target recommendations should be extended — that

tends to improve the recommendation performance in multiple domains simul-

taneously. This multi-target recommendation problem will face new challenges,
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e.g., multi-target recommendation systems may heavily rely on overlaps (com-

mon users/items) and rich historical data. Therefore, the effect of the proportion

of common users between multiple domains and the sparsity of datasets on rec-

ommendation performance should be studied.

• A graphical and attention framework for dual-target CDR has also been pro-

posed in Chapter 5, which can employ the graph-embedding strategy and element-

wise attention mechanism. In the future, the graph-embedding strategy could be

further improved by constructing a more informative graph. For example, so-

cial relations or more side information could be used to construct a graph. The

attention mechanism could consider devising a self-attention network to gener-

ate more representative combined embeddings. Additionally, the approach to

multi-target recommendations could be extended, and more comprehensive ex-

periments could be conducted on new datasets to validate the effect of the data

sparsity and the scale of common users on performance.

These aspects are very important for single-target CDR and dual-target CDR. Partic-

ularly, the first point includes two aspects, i.e., more mapping strategies and CDR +

CSR, which aim to utilise auxiliary data more reasonably and to utilise more auxil-

iary data by more overlaps, i.e., common users + common items, respectively. The

second and third points mainly include two aspects, i.e., multi-target recommenda-

tion and multi-content recommendation, which aim to utilise more auxiliary data from

more domains and to utilise more types of auxiliary data, respectively. The purest

motivation behind these aspects is to properly utilise more types of data from more

related domains or systems. If these aspects can be done in the future, the data sparsity

problem in RSs will be greatly alleviated and even solved. Then, the recommendation

accuracy of many recommender systems will be significantly improved.



Appendix A

The Notations in the Thesis

Table A.1: The important notations in Chapter 4 (part 1)

Symbol Definition

cij ∈ C
the comment (e.g., the review

and the tags) of user ui on item vj
C ∈ Rm×n the user comments

D = {d1, d2, ..., dm+n}
the content documents of

users and items
ID = {id1, ..., idn} the item details

k the dimension of embedding
m the number of users
n the number of items
P the optimised embedding of users
Q the optimised embedding of items

rij ∈ R the rating of user ui on item vj
R ∈ Rm×n the rating matrix
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Table A.2: The important notations in Chapter 4 (part 2)

Symbol Definition
U = {u1, ..., um} the set of users

U the rating embedding of users
UC the document embedding of users

UP = {up1, ..., upm} the user profiles
V = {v1, ..., vn} the set of items

V the rating embedding of items
V C the document embedding of items

yij ∈ Y the interaction of user ui on item vj
Y ∈ Rm×n the user-item interaction matrix

∗a and ∗b
the notations in domains

A and B, e.g., Ua represents
the set of users U in domain A

∗̂
the predicted notations, e.g., Ŷ

represents the predicted user-item
interaction matrix
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Table A.3: The important notations in Chapter 5

Symbol Definition

cij ∈ C
the comment (e.g., the review and the tags) of

user ui on item vj
C ∈ Rm×n the user comments

D = {d1, d2, ..., dm+n} the content documents of users and items
ID = {id1, ..., idn} the item details

G = ({U ,V}, E)
the heterogeneous graph, E is the set of

user-user, user-item, and item-item relationships
k the dimension of embedding matrix
m the number of users
n the number of items
Ũ the combined embeddings of common users

rij ∈ R the rating of user ui on item vj
R ∈ Rm×n the rating matrix

U = {u1, ..., um} the set of users
U the graph embedding matrix of users
UC the document embedding matrix of users

UP = {up1, ..., upm} the user profiles
V = {v1, ..., vn} the set of items

V the graph embedding matrix of items
V C the document embedding matrix of items

yij ∈ Y the interaction of user ui on item vj
Y ∈ Rm×n the user-item interaction matrix

∗a and ∗b the notations for domains a and b, e.g., ma

represents the number of users in domain a

∗̂ the predicted notations, e.g., ŷij represents the
predicted interaction of ui on item vj



Appendix B

The Acronyms in the Thesis

Table B.1: The Acronyms in All the Chapters

Sections Explanations Acronyms
Chapter 1&2&4&5 Single-domain recommendtion SDR

Chapter 1&2&3&4&5&6 Cross-domain recommendtion CDR
Chapter 1&2&4&5 Multi-domain recommendation MDR

Chapter 1&2&4&5
Dual-target cross-domain

recommendtion
DTCDR

Chapter 1&2&3&4&5 Collaborative filtering CF
Chapter 1&2&3&4&5 Matrix factorisation MF
Chapter 1&2&3&4&5 Transfer learning TL
Chapter 1&2&3&4&5 Multilayer perceptron MLP

Chapter 1&2&4&5 Multi-task learning MTL
Chapter 1&2&5 Graph embedding GE

Chapter 3 Mean absolute error MAE
Chapter 3 Root mean square error RMSE

Chapter 4&5 Hit ratio HR

Chapter 4&5
Normalised discounted

cumulative gain
NDCG
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